DOI QR코드

DOI QR Code

Sentinel-1 & -2 위성영상 기반 식생지수와 Water Cloud Model을 활용한 토양수분 산정

Soil moisture estimation using the water cloud model and Sentinel-1 & -2 satellite image-based vegetation indices

  • 정지훈 (건국대학교 일반대학원 사회환경플랜트공학과) ;
  • 이용관 (건국대학교 공과대학 사회환경공학부) ;
  • 김진욱 (건국대학교 일반대학원 사회환경플랜트공학과) ;
  • 장원진 (건국대학교 일반대학원 사회환경플랜트공학과) ;
  • 김성준 (건국대학교 공과대학 사회환경공학부)
  • Chung, Jeehun (Department of Civil, Environmental and Plant Engineering, Graduate School, Konkuk University) ;
  • Lee, Yonggwan (Division of Civil and Environmental Engineering, College of Engineering, Konkuk University) ;
  • Kim, Jinuk (Department of Civil, Environmental and Plant Engineering, Graduate School, Konkuk University) ;
  • Jang, Wonjin (Department of Civil, Environmental and Plant Engineering, Graduate School, Konkuk University) ;
  • Kim, Seongjoon (Division of Civil and Environmental Engineering, College of Engineering, Konkuk University)
  • 투고 : 2022.09.13
  • 심사 : 2023.02.10
  • 발행 : 2023.03.31

초록

본 연구에서는 합성개구레이더(Synthetic Aperture Radar, SAR) 기반의 식생을 고려하는 후방산란모델 Water Cloud Model (WCM)을 활용한 토양수분 산정 연구를 수행하였다. 금강 상류의 용담댐유역을 포함한 40 × 50 km2 영역의 Sentinel-1 SAR 및 Sentinel-2 MSI (Multi-Spectral Instrument) 영상을 수집하여 연구에 활용하였다. WCM의 식생변수로는 Sentinel-1 기반의 식생지수 RVI (Radar Vegetation Index), 탈분극비(Depolarization Rario, DR)와 Sentinel-2 기반의 NDVI (Normalized Difference Vegetation Index)를 활용하였다. WCM의 정모델링(forward modeling)은 토양수분과 후방산란계수의 특성이 유사한 3개 Group으로 나누어 수행하였다. 토양수분과 후방산란계수의 선형적인 관계가 명확할수록 Group의 모의 성능이 더 높게 나타났으며, 식생지수 별로는 NDVI, RVI, DR 순으로 정확도가 높았다. 토양수분을 모의하기 위해 모의된 후방산란계수를 반전(inversion)하였으며, 모의 성능은 정모델링 결과와 비례하였다. WCM 모의의 오류는 실측 후방산란계수 기준 약 -12dB를 기점으로 증가하는 양상을 보였다.

In this study, a soil moisture estimation was performed using the Water Cloud Model (WCM), a backscatter model that considers vegetation based on SAR (Synthetic Aperture Radar). Sentinel-1 SAR and Sentinel-2 MSI (Multi-Spectral Instrument) images of a 40 × 50 km2 area including the Yongdam Dam watershed of the Geum River were collected for this study. As vegetation descriptor of WCM, Sentinel-1 based vegetation index RVI (Radar Vegetation Index), depolarization ratio (DR), and Sentinel-2 based NDVI (Normalized Difference Vegetation Index) were used, respectively. Forward modeling of WCM was performed by 3 groups, which were divided by the characteristics between backscattering coefficient and soil moisture. The clearer the linear relationship between soil moisture and the backscattering coefficient, the higher the simulation performance. To estimate the soil moisture, the simulated backscattering coefficient was inverted. The simulation performance was proportional to the forward modeling result. The WCM simulation error showed an increasing pattern from about -12dB based on the observed backscattering coefficient.

키워드

과제정보

본 결과물은 환경부의 재원으로 한국환경산업기술원의 수생태계 건강성 확보 기술개발사업의 지원을 받아 연구되었습니다(2020003050001). 또한, 본 연구는 한국수자원공사(K-water) 수자원위성 지상운용체계 구축사업의 지원을 받아 수행되었습니다.

참고문헌

  1. Attarzadeh, R., Amini, J., Notarnicola, C., and Greifeneder, F. (2018). "Synergetic use of Sentinel-1 and Sentinel-2 data for soil moisture mapping at plot scale." Remote Sensing, Vol. 10, No. 8, 1285.
  2. Attema, E.P.W., and Ulaby, F.T. (1978). "Vegetation modeled as a water cloud." Radio Science, Vol. 13, No. 2, pp. 357-364. https://doi.org/10.1029/RS013i002p00357
  3. Baghdadi, N., El Hajj, M., Zribi, M., and Bousbih, S. (2017). "Calibration of the water cloud model at C-Band for winter crop fields and grasslands." Remote Sensing, Vol. 9, No. 9, 969.
  4. Baghdadi, N., Gherboudj, I., Zribi, M., Sahebi, M., King, C., and Bonn, F. (2004). "Semi-empirical calibration of the IEM backscattering model using radar images and moisture and roughness field measurements." International Journal of Remote Sensing, Vol. 25, No. 18. pp. 3593-3623. https://doi.org/10.1080/01431160310001654392
  5. Bai, X., He, B., Li, X., Zeng, J., Wang, X., Wang, Z., Zeng, Y., and Su, Z. (2017). "First assessment of Sentinel-1A data for surface soil moisture estimations using a coupled water cloud model and advanced integral equation model over the tibetan plateau." Remote Sensing, Vol. 9, No. 7, 714.
  6. Bindlish, R., and Barros, A.P. (2001). "Parameterization of vegetation backscatter in radar-based soil moisture estimation." Remote Sensing of the Environment, Vol. 76, No. 1, pp. 130-137. https://doi.org/10.1016/S0034-4257(00)00200-5
  7. Bouchat, J., Tronquo, E., Orban, A., Neyt, X., Verhoest, N.E.C., and Defourny, P. (2022). "Green area index and soil moisture retrieval in maize fields using multi-polarized C- and L-Band SAR data and the water cloud model." Remote Sensing, Vol. 14, No. 10, 2496.
  8. Bryant, R., Moran, M.S., Thoma, D.P., Collins, C.D.H., Skirvin, S., Rahman, M., Slocum, K., Starks, P., Bosch, D., and Dugo, M.P.G. (2007). "Measuring surface roughness height to parameterize radar backscatter models for retrieval of surface soil moisture." IEEE Geoscience and Remote Sensing Letters, Vol. 4, No. 1, pp. 137-141. https://doi.org/10.1109/LGRS.2006.887146
  9. Callens, M., Verhoest, N.E.C., and Davidson, M.W.J. (2006). "Parameterization of tillage-induced single-scale soil roughness from 4-m profiles." IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 4, pp. 878-888. https://doi.org/10.1109/TGRS.2005.860488
  10. Chae, H.S., Lim, K.S., and Moon, D.Y. (2016). Yongdam experimental catchment manage white book. Publication No. 2016-WR-AR -75-290, Korea Water Resources Corporation.
  11. Champion, I. (1996). "Simple modelling of radar backscattering coefficient over a bare soil: Variation with incidence angle, frequency and polarisation." International Journal of Remote Sensing, Vol. 15, No. 1, pp. 783-800. https://doi.org/10.1080/01431169608949045
  12. Chauhan, S., Srivastava, H.S., and Patel, P. (2018). "Wheat crop biophysical parameters retrieval using hybrid-polarized RISAT -1 SAR data." Remote Sensing of Environment, Vol. 216, pp. 28-43. https://doi.org/10.1016/j.rse.2018.06.014
  13. Cho, K., and Kim, Y. (2019). "Simulation of Sentinel-2 product using airborne hyperspectral image and analysis of TOA and BOA reflectance for evaluation of Sen2cor atmosphere correction: Focused on agricultural land." Korean Journal of Remote Sensing, Vol. 35, No. 2, pp. 251-263. https://doi.org/10.7780/KJRS.2019.35.2.5
  14. Cho, S., Jeong, J., Lee, S., and Choi, M. (2020). "Estimation of soil moisture based on sentinel-1 SAR data: focusing on cropland and grassland area." Journal of Korea Water Resources Association, Vol. 53, No. 11, pp. 973-983. https://doi.org/10.3741/JKWRA.2020.53.11.973
  15. Cho, S., Jeong, J., Lee, S., and Choi, M. (2021). "Estimation of soil moisture based on Sentinel-1 SAR data: Assessment of soil moisture estimation in different vegetation condition." Journal of Korea Water Resources Association, Vol. 54, No. 2, pp. 81-91.
  16. Chung, J., Lee, Y., Kim, J., Jung, C., and Kim, S. (2022). "Soil moisture content estimation based on Sentinel-1 SAR imagery using an artificial neural network and hydrological components." Remote Sensing, Vol. 14, No. 3, 465.
  17. Chung, J.H., Lee, Y.G., and Kim, S.J. (2019). "Assessment of surface temperature mitigation effects of wetlands during heat and cold waves using daytime and nighttime MODIS land surface temperature." Journal of Wetlands Research, Vol. 21, No. spc, pp. 123-133. https://doi.org/10.17663/JWR.2019.21.S-1.123
  18. Chung, J.H., Lee, Y.G., Jang, W.J., Lee, S.W., and Kim, S.J. (2020). "Correlation analysis between air temperature and MODIS land surface temperature and prediction of air temperature using TensorFlow long short-term memory for the period of occurrence of cold and heat waves." Remote Sensing, Vol. 12, No. 19, 3231.
  19. Comite, D., and Pierdicca, N. (2019). "Monostatic and bistatic scattering modeling of the anisotropic rough soil." IEEE Transactions on Geoscience and Remote Sensing, Vol. 57, No. 5, pp. 2543-2556. https://doi.org/10.1109/TGRS.2018.2874540
  20. Dobson, M.C., and Ulaby, F.T. (1986). "Active microwave soil moisture research." IEEE Transactions on Geoscience and Remote Sensing, Vol. 24, No. 1, pp. 28-35. https://doi.org/10.1109/TGRS.1986.289585
  21. Dubois, P.C., Van Zyl, J., and Engman, T. (1995) "Measuring soil moisture with imaging radars." IEEE Transactions on Geoscience and Remote Sensing, Vol. 33, No. 4, pp. 915-926. https://doi.org/10.1109/36.406677
  22. European Space Agency (ESA) (2021). Spectral bands for the SENTINEL-2 sensors, accessed 7 October 2022, <https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi/msi-instrument>.
  23. Eweys, O.A., Elwan, A.A., and Borham, T.I. (2017) "Retrieving topsoil moisture using RADARSAT-2 data, a novel approach applied at the east of the Netherlands." Journal of Hydrology, Vol. 555, pp. 670-682. https://doi.org/10.1016/j.jhydrol.2017.10.048
  24. Fung, A., Li, Z., and Chen, K. (1992). "Backscattering from a randomly rough dielectric surface." IEEE Transactions on Geoscience and Remote Sensing, Vol. 30, No. 2, pp. 356-369. https://doi.org/10.1109/36.134085
  25. Graham, A.J., and Harris, R. (2003). "Extracting biophysical parameters from remotely sensed radar data: A review of the water cloud model." Progress in Physical Geography: Earth and Environment, Vol. 27, No. 2, pp. 217-229. https://doi.org/10.1191/0309133303pp378ra
  26. Hajdu, I., Yule, I., and Dehghan-Shear, M.H. (2018). "Modelling of near-surface soil moisture using machine learning and multitemporal sentinel 1 images in New Zealand." IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, pp. 1422-1425.
  27. Hegazi, E.H., Yang, L., and Huang, J. (2021). "A convolutional neural network algorithm for soil moisture prediction from Sentinel-1 SAR images." Remote Sensing, Vol. 13, No. 24, 4964.
  28. Hornbuckle, B., Walker, V., Eichinger, B., Wallace, V., and Yildirim, E. (2017). "Soil surface roughness observed during SMAPVEX16-IA and its potential consequences for SMOS and SMAP." Proceedings 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX U.S., pp. 2027-2030.
  29. Joseph, A.T., Van der Velde, R., O'Neill, P.E., Lang, R., and Gish, T. (2010). "Effects of corn on C- and L-band radar backscatter: A correction method for soil moisture retrieval." Remote Sensing of Environment, Vol. 114, No. 11, pp. 2417-2430. https://doi.org/10.1016/j.rse.2010.05.017
  30. Jung, G.J., Hong, J.Y., and Oh, Y.S. (2004). "SAR data correction based on calibrated-scatterometer measurements." The Journal of Korean Institute of Electromagnetic Engineering and Science, Vol. 15, No. 2. pp. 121-126.
  31. Kim, G.S., and Kim, J.P. (2011). "Correlation analysis between soil moisture retrieved from satellite images and ground network Measurements." Journal of the Korean Association of Geographic Information Studies, Vol. 14, No. 2, pp. 69-81. https://doi.org/10.11108/KAGIS.2011.14.2.069
  32. Kim, K.S. (2007). "Soil moisture analysis for watershed management (I) - research trends in soil moisture observation." Water for Future, Vol. 40, No. 1, pp. 62-71.
  33. Kim, Y., and van Zyl, J.J. (2009). "A time-series approach to estimate soil moisture using polarimetric radar data." IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 8, pp. 2519-2527. doi: 10.1109/TGRS.2009.2014944.
  34. Kumar, K. Hari Prasad, K.S., and Arora, M.K. (2012). "Estimation of water cloud model vegetation parameters using a genetic algorithm." Hydrological Sciences Journal, Vol. 57, No. 4, pp. 776-789. https://doi.org/10.1080/02626667.2012.678583
  35. Kumar, K., Rao, H.P.S., and Arora, M.K. (2014). "Study of water cloud model vegetation descriptors in estimating soil moisture in Solani catchment." Hydrological Processes, Vol. 29, No. 9, pp. 2137-2148. https://doi.org/10.1002/hyp.10344
  36. Kweon, S.K., Hwang, J.H., and Oh, Y. (2012). "COSMO SkyMed AO projects - soil moisture detection for vegetation fields based on a modified water-cloud model using COSMO-SkyMed SAR data." 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, pp. 1204-1207.
  37. Lee, J.S., Wen, J.H., Ainsworth, T.L., Chen, K.S., and Chen, A.J. (2009). "Improved sigma filter for speckle filtering of SAR imagery." IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 1, pp. 202-213. https://doi.org/10.1109/TGRS.2008.2002881
  38. Lee, S.C., Baei, J.J., Choi, M.H., and Cho, Y.H. (2019). "Evaluation of the behavior and quality in soil moisture data: A case study of Yongdam study watershed." Journal of Korea Water Resources Association, Vol. 52, No. 12, pp. 951-962.
  39. Lee, Y.J., Kim, G.Y., Lee, Y.G., Jeong, J.H., and Choi, M.H. (2020). "Introduction and development direction of various soil moisture measurement methods." Water for Future, Vol. 53, No. 10, pp. 126-134.
  40. Lievens, H., and Verhoest, N.E.C. (2011). "On the retrieval of soil moisture in wheat fields from L-Band SAR based on water cloud modeling, the IEM, and effective roughness parameters." IEEE Geoscience and Remote Sensing Letters, Vol. 8, No. 4, pp. 740-744. https://doi.org/10.1109/LGRS.2011.2106109
  41. Lin, H., Chen, J., Pei, Z., Zhang, S., and Hu, X. (2009). "Monitoring sugarcane growth using ENVISAT ASAR data." IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 8, pp. 2572-2580. https://doi.org/10.1109/TGRS.2009.2015769
  42. Liu, Y., Qian, J., and Yue, H. (2021). "Combined Sentinel-1A with Sentinel-2A to estimate soil moisture in farmland." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 14, pp. 1292-1310. https://doi.org/10.1109/JSTARS.2020.3043628
  43. Mandal, D., Hosseini, M., McNairn, H., Kumar, V., Bhattacharya, A., Rao, Y.S., Mitchell, S., Robertson, L.D., Davidson, A., and Dabrowska-Zielinska, K. (2019). "An investigation of inversion methodologies to retrieve the leaf area index of corn from C-band SAR data." International Journal of Applied Earth Observation and Geoinformation, Vol. 82, 101893.
  44. McNarin, H., Jackson, T.J., Powers, J., Belair, S., Berg, A., Bullock, P., Colliander, A., Cosh, M.H., Kim, S.B., Magagi, R., Pacheco, A., and Merzouki, A. (2016). SMAPVEX16-MB experimental plan, Technical Report, Ottawa, Canada, pp. 7-71.
  45. McNarin, H., Jackson, T.J., Wiseman, G., Belair, S., Berg, A., Bullock, P., Colliander, A., Cosh, M.H., Kim, S.B., Magagi, R., Moghaddam, M., Njoku, E.G., Adams, J.R., Homayouni, S., Ojo, E.R., Rowlandson, T.L., Shang, J., Goita, K., and Hosseini, M. (2015). "The Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12): Prelaunch calibration and validation of the SMAP soil moisture algorithms." IIEEE Transactions on Geoscience and Remote Sensing, Vol. 53, No. 5, pp. 2784-2801. https://doi.org/10.1109/TGRS.2014.2364913
  46. Ministry of Environment (ME) (2020). Korea annual hydrological report.
  47. Moran, M.S., Hymer, D.C., Qi, J., and Sano, E.E. (2000). "Soil moisture evaluation using multi-temporal synthetic aperture radar (SAR) in semiarid rangeland." Agricultural and Forest Meteorology, Vol. 105, No. 1-3, pp. 69-80. https://doi.org/10.1016/S0168-1923(00)00189-1
  48. Nasirzadehdizaji, R., Sanli, F.B., Abdikan, S., Cakir, Z., Sekertekin, A., and Ustuner, M. (2019). "Sensitivity analysis of multitemporal Sentinel-1 SAR parameters to crop height and canopy coverage." Applied Sciences, Vol. 9, No. 4, 655.
  49. Nicolau, A.P., Flores-Anderson, A., Griffin, R., Herndon, K., and Meyer, F.J. (2021). "Assessing SAR C-band data to effectively distinguish modified land uses in a heavily disturbed Amazon forest." International Journal of Applied Earth Observation and Geoinformation, Vol. 94, 102214.
  50. Oh. Y., Sarabandi, K., and Ulaby, F. (1992). "An empirical model and an inversion technique for radar scattering from bare soil surfaces." IEEE Transactions on Geoscience and Remote Sensing, Vol. 30, No. 2, pp. 370-381. https://doi.org/10.1109/36.134086
  51. Ottinger, M., and Kuenzer, C. (2020). "Spaceborne L-band synthetic aperture radar data for geoscientific analyses in coastal Land applications: A review." Remote Sensing, Vol. 12, No. 14, 2228.
  52. Park, J.Y., Ahn, S.R., Hwang, S.J., Jang, C.H., Park, G.A., and Kim, S.J. (2014). "Evaluation of MODIS NDVI and LST for indicating soil moisture of forest areas based on SWAT modeling." Paddy and Water Environment, Vol. 12, No. s1, pp. 77-88. https://doi.org/10.1007/s10333-014-0425-3
  53. Park, S., and Oh, Y. (2016). "Effect of vegetation layers on soil moisture measurement using radars." The Journal of Korean Institute of Electromagnetic Engineering and Science, Vol. 27, No. 7, pp. 660-663. https://doi.org/10.5515/KJKIEES.2016.27.7.660
  54. Park, S.E., Jung, Y.T., Cho, J.H., Moon, H., and Han, S.H. (2019). "Theoretical evaluation of water cloud model vegetation parameters." Remote Sensing, Vol. 11, No. 8, 894.
  55. Prevot, L., Champion, I., and Guyot, G. (1993). "Estimating surface soil moisture and leaf area index of a wheat canopy using a dual-frequency (C and X bands) scatterometer." Remote Sensing of Environment, Vol. 46, No. 3, pp. 331-339. https://doi.org/10.1016/0034-4257(93)90053-Z
  56. Quesney, A. (2000) "Estimation of watershed soil moisture index from ERS/SAR data." Remote Sensing of Environment, Vol. 72, No. 3, pp. 290-303. https://doi.org/10.1016/S0034-4257(99)00102-9
  57. Shashikant, V., Shariff, A.R.M., Wayayok, A., Kamal, M.R., Lee, Y.P., and Takeuchi, W. (2021). "Vegetation effects on soil moisture retrieval from water cloud model Using PALSAR-2 for oil palm trees." Remote Sensing, Vol. 13, No. 20, 4023.
  58. Shi, J., Du, Y., Du, J., Jiang, L., Chai, L., Mao, K., Xu, P., Ni, W., Xiong, C., and Liu, Q. (2012). "Progresses on microwave remote sensing of land surface parameters." Science China Earth Sciences, Vol. 55, pp. 1052-1078. https://doi.org/10.1007/s11430-012-4444-x
  59. Singha, M., Dong, J., Zhang, G., and Xiao, X. (2019). "High resolution paddy rice maps in cloud-prone Bangladesh and Northeast India using Sentinel-1 data." Scientific Data, Vol. 6, 26.
  60. Su, Z., Troch, P.A. and De Troch, F.P. (1997). "Remote sensing of bare surface soil moisture using EMAC/ESAR data." International Journal of Remote Sensing, Vol. 18, No. 10, pp. 2105-2124. https://doi.org/10.1080/014311697217783
  61. Tucker, C.J. (1979). "Red and photographic infrared linear combinations for monitoring vegetation." Remote Sensing of Environment, Vol. 8, No. 2, pp. 127-150. https://doi.org/10.1016/0034-4257(79)90013-0
  62. Ulaby, F.T., Long, D., Blackwell, W., Elachi, C., Fung, A., Ruf, C., Sarabandi, K., Zyl, J., and Zebker, H. (2014). Microwave radar and radiometric remote sensing. University of Michigan Press, Ann Arbor, MI, U.S.
  63. Ulaby, F.T., Moore, R.K., and Fung, A.K. (1986). Microwave remote sensing: Active and passive, Volume III. Artech House, Norwood, MA, U.S.
  64. Ulaby, F.T., Sarabandi, K., McDonald, K., Whitt, M., and Dobson, M.C. (1990). "Michigan microwave canopy scattering model." International Journal of Remote Sensing, Vol. 11, No. 7, pp. 1223-1253. https://doi.org/10.1080/01431169008955090
  65. Wang, Z., Zhao, T., Qiu, J., Zhao, X., Li, R., and Wang, S. (2021). "Microwave-based vegetation descriptors in the parameterization of water cloud model at L-band for soil moisture retrieval over croplands." GIScience & Remote Sensing, Vol. 58, No. 1, pp. 48-67. https://doi.org/10.1080/15481603.2020.1857123
  66. Weiss, T., Ramsauer, T., Jagdhuber, T., Low, A., and Marzahn, P. (2021). "Sentinel-1 backscatter analysis and radiative transfer modeling of dense winter wheat time series." Remote Sensing, Vol. 13, No. 12, 2320.
  67. Xing, M., He, B., Ni, X., Wang, J., An, G., Shang, J., and Huang, X. (2019). "Retrieving surface soil moisture over wheat and soybean fields during growing season using modified water cloud model from Radarsat-2 SAR data." Remote Sensing, Vol. 11, No. 16, pp. 1956.
  68. Yadav, V.P., Prasad, R., Bala, R. and Srivastava P.K. (2021). "Assessment of red-edge vegetation descriptors in a modified water cloud model for forward modelling using Sentinel-1A and Sentinel-2 satellite data." International Journal of Remote Sensing, Vol. 42. No. 3, pp. 794-804. https://doi.org/10.1080/2150704X.2020.1823035
  69. Yoo, H.Y., Park, N.W., Hong, S.Y., Lee, K.D., and Kim, L.H. (2013). "Feature extraction and classification of multi-temporal SAR data using 3D wavelet transform." Korean Journal of Remote Sensing, Vol. 29, No. 5, pp. 569-579.
  70. Zhang, M., Chen, F., Tian, B., and Liang, D. (2019). "Multi-temporal SAR image classification of coastal plain wetlands using a new feature selection method and random forests." Remote Sensing Letters, Vol. 10, No. 3, pp. 312-321. https://doi.org/10.1080/2150704X.2018.1528397
  71. Zribi, M., and Dechambre, M. (2003). "A new empirical model to retrieve soil moisture and roughness from C-band radar data." Remote Sensing of Environment, Vol. 84, No. 1, pp. 45-52. https://doi.org/10.1016/S0034-4257(02)00069-X
  72. Zribi, M., Taconet, O., Hegarat-Mascle, S.L., Vidal-Madjar, D., Emblanch, C., Loumagne, C., and Normand, M. (1997). "Backscattering behavior and simulation comparison over bare soils using SIR-C/X-SAR and ERASME 1994 data over Orgeval." Remote Sensing of Environment, Vol. 59, No. 2, pp. 256-266. https://doi.org/10.1016/S0034-4257(96)00158-7