• Title/Summary/Keyword: Vegetable crop

Search Result 340, Processing Time 0.032 seconds

Weed Control in Horticultural Crops in Korea (원예작물의 잡초방제 현황과 전망)

  • Chae-Don Ban
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.23 no.3
    • /
    • pp.73-82
    • /
    • 1978
  • Researches on weed control in vegetable and fruits are reviewed in the aspects of technical dissemination of research results and problems to be solved for the establishment of integrated weed control measures. The future researches in relation to the possible changes of cultivation pattern in horticultural crops are also discussed. The current situation of weed control in horticulture in general is classed as a primitive stage comparing to other food crops and is well behind of other advanced countries. It is strongly suggested that only steady and extensive researches in this field will produce a significant contribution to the minimization of labor cost in horticultural crop production.

  • PDF

Effects of Planting Density on Growth and Yield of Vegetable Soybean Varieties (파종밀도가 풋콩 품종의 생육 및 수량에 미치는 영향)

  • Lee, Seung-Su;Kim, Chang-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.1
    • /
    • pp.64-69
    • /
    • 2008
  • The objective of experiment was to investigate the effects of planting density on growth and yield of vegetable soybean, and to clarify the optimum planting density of vegetable soybean in the middle west region of Korea. The field experiment with 4 levels of planting density was carried out at Yesan area in $2005{\sim}2006$. The days from seeding to flowering and the days from seeding to harvesting and lodging were not significantly different among planting distance. The stem length was increased as planting distance was shortened but the number of node, branch, pod per branch, pod per individual, weight of stem and pod, one hundred pod weight and rate of 2+3 seed per pod were decreased as planting density was increased. The size of vegetable soybeans was not significantly different among planting distance, but the harvest index of vegetable soybean was decreased as planting distance was shortened. Yield of vegetable soybean was increased as planting distance was decreased. However, the approriate densities for stem and pod weight per a plant, number of pod per a branch and the vegetable soybean yield of 2+3 seed per pod were different from that density. The optimal planting distance of varieties was $60{\sim}25\;cm$ in Sunheukkong and Ilpumgeomjeongkong and was $60{\sim}35\;cm$ in Galmikong.

Gaining Insight into IT Investment in the Agriculture Industry: Comparison of IT Portfolios by Type of Crops

  • Jiyeol Kim;Cheul Rhee;Junghoon Moon
    • Asia pacific journal of information systems
    • /
    • v.27 no.4
    • /
    • pp.233-244
    • /
    • 2017
  • IT portfolio, meaning the ratio of investment with four different purposes of IT, is widely used for evaluating the adequacy of investment and its performance within firms. Despite of such a useful framework looking at investment on IT, IT portfolio in agriculture industry seems to be differentiated from other industries. In this study, we compared IT portfolios of farms: grain, field fruit and vegetable, greenhouse fruit, greenhouse vegetable, beef cattle and pig. We classified farms by their return on equity (ROE) in order to analyze the relationship between IT portfolio of each crop and performance. Then, we found patterns of IT portfolios of top-performance farms compared to all farms for each agricultural product. Lastly, peculiarities of each crop are interpreted and discussed to find out top-performance farms' IT investment patterns. From our study, it could be inferred that monotonous IT investments may not be as effective.

Occurrence of Clubroot in Cruciferous Vegetable Crops and Races of the Pathogen in Korea

  • Cho, Weon-Dae;Kim, Wan gyu;Kenji Takahashi
    • The Plant Pathology Journal
    • /
    • v.19 no.1
    • /
    • pp.64-68
    • /
    • 2003
  • Cruciferous vegetable crops grown in several locations in Korea were surveyed from 1996 to 2000. Clubroot severely occurred up to a maximum of 100% in Chinese cabbage fields in 15 out of 42 locations, and in cabbage fields in 5 out of 13 locations surveyed. The disease also severely occurred up to a maximum of 40% in radish fields in 6 out of 35 locations, and up to a maximum of 40% and 100% in turnip and brown mustard fields in one each out of the few locations surveyed, respectively. The disease occurred less than l% in one kale field in one out of two locations surveyed. A total of 268 isolates of Plasmodiophora brassicae was obtained from six cruciferous vegetable crops. The isolates were classified into 13 races based on their pathogenicity to the differential varieties of cabbage and rutabaga. There were 13 races found in isolates from Chinese cabbage, while 6 races each were found in isolates from cabbage and radish. There were five and three races found in turnip and brown mustard isolates, respectively. One isolate from kale was identified as race 8. Race 8 was the most frequently isolated from five cruciferous vegetable crops, except brown mustard. Races 3 and 14 were isolated only from Chinese cabbage.

Seed Purity Test and Genetic Diversity Evaluation Using RAPD Markers in Radish (Raphanus sativus L.)

  • Huh, Man-Kyu;Choi, Joo-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.4
    • /
    • pp.346-350
    • /
    • 2009
  • The cultivated radish (Raphanus sativus L.) is a major vegetable crop in the world wide and fast-growing species that grows inhabitats of six continents. It is very important to determine hybrid seed purity in the production of hybrid Brassica vegetable seeds to avoid unacceptable contamination with self-inbred (sib) seeds. The use of random amplified polymorphic DNA (RAPD) markers for evaluating seed purity in $F_2$-hybrid radish cultivars demonstrated. One hundred eighty seeds from the F1 male and female harvest were subsequently screened for seed purity using 13 primers. The 13 primers result in 17 cultivar-specific bands and 23 variable RAPD bands scored for cultivar. RAPD analysis of hybrid seeds from the harvest revealed 128 seeds tested except underdevelopment and decayed seeds were sibs. Especially, $F_2$ hybrids of radish, OPC13, OPD20 were presented clear hybrid bands. It maintains higher than average level of genetic diversity compared with their correspondent parents. RAPD amplification of DNA extracted from germinated individuals from the female harvest reveal that 10 of 208 seeds tested were self-inbred (4.8%). RAPD analysis of hybrid seeds from the male harvest revealed 7 of the 208 seeds tested were sibs (3.4%). The RAPD may lead to a better insight in to the hybrid seed purity.

Application of SCAR markers to self-incompatibility genotyping in breeding lines of radish (Raphanus sativus L.)

  • Chung, Hee;Kim, Su;Park, HanYong;Kim, Ki-Taek
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.397-402
    • /
    • 2009
  • Self-incompatibility (SI) prevents self-fertilization by inhibiting the pollen tube growth of self-pollen. Molecular analysis has revealed that the S locus comprises a number of genes, such as the S-locus glycoprotein (SLG), the S-locus receptor kinase (SRK), and SP11 (SCR). Although molecular markers related to those genes have been developed, a simple S-haplotype detecting method has not been reported due to the highly polymorphic and relatively small coding regions. In this study, the sequence characterized amplified region (SCAR) markers were used to establish an efficient radish genotyping method. We identified the S-haplotypes of 192 radish accessions using 19 different markers, which proved to be highly reliable. The accessions were assigned to 17 types of S-haplotypes, including 8 types of SRKs and 9 types of SLGs. Since the developed SCAR markers are based on their gene sequences, we could easily identify the S-haplotypes by a single specific band, with the highest frequencies detected for SLG 5, SRK 1, and SLG 1, in order. Among the tested markers, the SLG 1, SRK 1, and SRK 5 markers exhibited high reliability, compared to phenotypic results. Furthermore, we identified the seven types of unreported SLGs using SLG Class -I and -II specific markers. Although the developed SCAR markers still need to be improved for the genotyping of all S-haplotypes, these markers could be helpful for monitoring inbred lines, and for developing the MAS in radish breeding programs.

Flowering and Maturing Response to Seeding Date and Short-day Treatment in Vegetable Perilla (잎들깨의 개화 및 결실에 미치는 파종기와 단일처리의 영향)

  • 한상익;곽재균;오기원;배석복;김정태;곽용호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.4
    • /
    • pp.466-472
    • /
    • 1997
  • Vegetable perilla, "Ipdlkkae 1"(Perilla frutescens var japonica Hara), was tested about the flowering and maturing responce in summer and winter. In summer season, it was researched about those responses according to the change of seeding date from May 15th to Oct. 15th at one month interval in the field. "Ipdlkkae 1" flowered Oct. 2nd under the day length of eleven hours and fourty-one minutes, compared with Sep. 6th (day length of twelve hours and fourty-three minutes) of "Yepsildlggae". And those responses showed that vegetable perilla was have to seeded before July 15th for two reason. The first is a unique response of perilla to day length. If perilla stay under short-day condition for some days, perilla will flower after four weeks. The second is a weather, especially frost and cold. In the test of latest seeding at Oct. 15th, the plants flowered more late than normal flowering period and they were not able to mature for frost of early winter. And this result showed that any other species, which has the characteristic of later flowering than that of "Ipdlkkae 1", could not able to mature in the field. In winter time, this species was tested about the same responses according to the change of short-day treatments. In the case of the test from May 1st (above fourteen hours day length), even if the test plants were stayed under short-day condition for more than 10 days, they were not able to mature, but flowerd. From the test of Apr. 15th, day length of thirteen hours, the plants were showed variable reaction to the short-day treatment. In this test, 11days for short-day treatment was a basic day to decide whether flowering was delayed or not. In the test from Apr. 1st, perilla seeds were able to harvest at least 5 days short-day treatment. In the final test from Mar. 15th, it had no need to take short-day treatment for harvesting of normal seeds, because the day length of that are twelve hours, which is an enough time to induce flowering and maturing, previously reported.

  • PDF

Genetic Diversity Based on Morphology and RAPD Analysis in Vegetable Soybean

  • Srinives, P.;Chowdhury, A.K.;Tongpamnak, P.;Saksoong, P.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.2
    • /
    • pp.112-120
    • /
    • 2001
  • Genetic diversity of 47 East-Asian vegetable soybean was characterized by means of agro-morphological traits and RAPD markers. A field trial was conducted to evaluate 14 agro-morphological traits. To study RAPD-based DNA analysis, a total of sixty 10-mer random primers were screened. Of these, 23 polymorphic markers in 16 varieties used for screening. Among 207 markers amplified, 48 were polymorphic for at least one pairwise comparison within the 47 varieties. A higher differentiation level between varieties was observed by using RAPD markers compared to morphological markers. Correspondence analysis using both types of marker showed that RAPD data could fully discriminate between all varieties, whereas morphological markers could not achieve a complete discrimination. Genetic distances between the varieties were estimated from simple matching coefficients, ranged from 0.0 to 0.640 with an average of 0.295$\pm$0.131 for morphological traits and 0.042 to 0.625 with an average of 0.336$\pm$0.099 for RAPD data, respectively. Cluster analysis based on genetic dissimilarity of these varieties gave rise to 4 distinct groups. The clustering results based on RAPDs did not match with those based on morphological traits. Geographical distribution of most varieties in each of the groups were not well defined. The results suggested that the level of genetic diversity within this group of East-Asian vegetable soybean varieties was sufficient for a breeding program and can be used to establish genetic relationships among them with unknown or unrelated pedigrees.

  • PDF