• Title/Summary/Keyword: Vector space model

Search Result 367, Processing Time 0.031 seconds

Context Aware Feature Selection Model for Salient Feature Detection from Mobile Video Devices (모바일 비디오기기 위에서의 중요한 객체탐색을 위한 문맥인식 특성벡터 선택 모델)

  • Lee, Jaeho;Shin, Hyunkyung
    • Journal of Internet Computing and Services
    • /
    • v.15 no.6
    • /
    • pp.117-124
    • /
    • 2014
  • Cluttered background is a major obstacle in developing salient object detection and tracking system for mobile device captured natural scene video frames. In this paper we propose a context aware feature vector selection model to provide an efficient noise filtering by machine learning based classifiers. Since the context awareness for feature selection is achieved by searching nearest neighborhoods, known as NP hard problem, we apply a fast approximation method with complexity analysis in details. Separability enhancement in feature vector space by adding the context aware feature subsets is studied rigorously using principal component analysis (PCA). Overall performance enhancement is quantified by the statistical measures in terms of the various machine learning models including MLP, SVM, Naïve Bayesian, CART. Summary of computational costs and performance enhancement is also presented.

Automatic facial expression generation system of vector graphic character by simple user interface (간단한 사용자 인터페이스에 의한 벡터 그래픽 캐릭터의 자동 표정 생성 시스템)

  • Park, Tae-Hee;Kim, Jae-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.8
    • /
    • pp.1155-1163
    • /
    • 2009
  • This paper proposes an automatic facial expression generation system of vector graphic character using gaussian process model. Proposed method extracts the main feature vectors from twenty-six facial data of character redefined based on Russell's internal emotion state. Also by using new gaussian process model, SGPLVM, we find low-dimensional feature data from extracted high-dimensional feature vectors, and learn probability distribution function (PDF). All parameters of PDF are estimated by maximization the likelihood of learned expression data, and these are used to select wanted facial expressions on two-dimensional space in real time. As a result of simulation, we confirm that proposed facial expression generation tool is working in the small facial expression datasets and can generate various facial expressions without prior knowledge about relation between facial expression and emotion.

  • PDF

An Image Segmentation Algorithm using the Shape Space Model (모양공간 모델을 이용한 영상분할 알고리즘)

  • 김대희;안충현;호요성
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.2
    • /
    • pp.41-50
    • /
    • 2004
  • Since the MPEG-4 visual standard enables content-based functionalities, it is necessary to extract video objects from video sequences. Segmentation algorithms can largely be classified into two different categories: automatic segmentation and user-assisted segmentation. In this paper, we propose a new user-assisted image segmentation method based on the active contour. If we define a shape space as a set of all possible variations from the initial curve and we assume that the shape space is linear, it can be decomposed into the column space and the left null space of the shape matrix. In the proposed method, the shape space vector in the column space describes changes from the initial curve to the imaginary feature curve, and a dynamic graph search algorithm describes the detailed shape of the object in the left null space. Since we employ the shape matrix and the SUSAN operator to outline object boundaries, the proposed algorithm can ignore unwanted feature points generated by low-level image processing operations and is, therefore, applicable to images of complex background. We can also compensate for limitations of the shape matrix with a dynamic graph search algorithm.

TIME SERIES PREDICTION USING INCREMENTAL REGRESSION

  • Kim, Sung-Hyun;Lee, Yong-Mi;Jin, Long;Chai, Duck-Jin;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.635-638
    • /
    • 2006
  • Regression of conventional prediction techniques in data mining uses the model which is generated from the training step. This model is applied to new input data without any change. If this model is applied directly to time series, the rate of prediction accuracy will be decreased. This paper proposes an incremental regression for time series prediction like typhoon track prediction. This technique considers the characteristic of time series which may be changed over time. It is composed of two steps. The first step executes a fractional process for applying input data to the regression model. The second step updates the model by using its information as new data. Additionally, the model is maintained by only recent data in a queue. This approach has the following two advantages. It maintains the minimum information of the model by using a matrix, so space complexity is reduced. Moreover, it prevents the increment of error rate by updating the model over time. Accuracy rate of the proposed method is measured by RME(Relative Mean Error) and RMSE(Root Mean Square Error). The results of typhoon track prediction experiment are performed by the proposed technique IMLR(Incremental Multiple Linear Regression) is more efficient than those of MLR(Multiple Linear Regression) and SVR(Support Vector Regression).

  • PDF

Speech Enhancement Based on Mixture Hidden Filter Model (HFM) Under Nonstationary Noise (혼합 은닉필터모델 (HFM)을 이용한 비정상 잡음에 오염된 음성신호의 향상)

  • 강상기;백성준;이기용;성굉모
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.387-393
    • /
    • 2002
  • The enhancement technique of noise signal using mixture HFM (Midden Filter Model) are proposed. Given the parameters of the clean signal and noise, noisy signal is modeled by a linear state-space model with Markov switching parameters. Estimation of state vector is required for estimating original signal. The estimation procedure is based on mixture interacting multiple model (MIMM) and the estimator of speech is given by the weighted sum of parallel Kalman filters operating interactively. Simulation results showed that the proposed method offers performance gains relative to the previous results with slightly increased complexity.

An ensemble learning based Bayesian model updating approach for structural damage identification

  • Guangwei Lin;Yi Zhang;Enjian Cai;Taisen Zhao;Zhaoyan Li
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.61-81
    • /
    • 2023
  • This study presents an ensemble learning based Bayesian model updating approach for structural damage diagnosis. In the developed framework, the structure is initially decomposed into a set of substructures. The autoregressive moving average (ARMAX) model is established first for structural damage localization based structural motion equation. The wavelet packet decomposition is utilized to extract the damage-sensitive node energy in different frequency bands for constructing structural surrogate models. Four methods, including Kriging predictor (KRG), radial basis function neural network (RBFNN), support vector regression (SVR), and multivariate adaptive regression splines (MARS), are selected as candidate structural surrogate models. These models are then resampled by bootstrapping and combined to obtain an ensemble model by probabilistic ensemble. Meanwhile, the maximum entropy principal is adopted to search for new design points for sample space updating, yielding a more robust ensemble model. Through the iterations, a framework of surrogate ensemble learning based model updating with high model construction efficiency and accuracy is proposed. The specificities of the method are discussed and investigated in a case study.

(A Comparison of Gesture Recognition Performance Based on Feature Spaces of Angle, Velocity and Location in HMM Model) (HMM인식기 상에서 방향, 속도 및 공간 특징량에 따른 제스처 인식 성능 비교)

  • 윤호섭;양현승
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.5_6
    • /
    • pp.430-443
    • /
    • 2003
  • The objective of this paper is to evaluate most useful feature vector space using the angle, velocity and location features from gesture trajectory which extracted hand regions from consecutive input images and track them by connecting their positions. For this purpose, the gesture tracking algorithm using color and motion information is developed. The recognition module is a HMM model to adaptive time various data. The proposed algorithm was applied to a database containing 4,800 alphabetical handwriting gestures of 20 persons who was asked to draw his/her handwriting gestures five times for each of the 48 characters.

An Efficient Attitude Reference System Design Using Velocity Differential Vectors under Weak Acceleration Dynamics

  • Lee, Byungjin;Yun, Sukchang;Lee, Hyung-Keun;Lee, Young Jae;Sung, Sangkyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.222-231
    • /
    • 2016
  • This paper proposes a new method achieving computationally efficient attitude reference system for low cost strapdown sensors and microprocessor platform. The main idea in this method is to define and compare velocity differential vectors, geometrically computed from INS and GPS data with different update rate, for generating attitude error measurements which is further used for filter construction. A quaternion based Kalman filter configuration is applied for the attitude estimation with the adapted measurement model of differential vector comparison. Linearized model for Extended Kalman Filter and low pass filtered characteristics of measurement greatly extend the affordability of the proposed algorithm to the field of simple low cost embedded systems. For performance verification, experiment are done employing a practical low cost MEMS IMU and GPS receiver specification. Performance comparison with a high grade navigation system demonstrated good estimation result.

A New Method for Monitoring Local Voltage Stability using the Saddle Node Bifurcation Set in Two Dimensional Power Parameter Space

  • Nguyen, Van Thang;Nguyen, Minh Y.;Yoon, Yong Tae
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.206-214
    • /
    • 2013
  • This paper proposes a new method for monitoring local voltage stability using the saddle node bifurcation set or loadability boundary in two dimensional power parameter space. The method includes three main steps. First step is to determine the critical buses and the second step is building the static voltage stability boundary or the saddle node bifurcation set. Final step is monitoring the voltage stability through the distance from current operating point to the boundary. Critical buses are defined through the right eigenvector by direct method. The boundary of the static voltage stability region is a quadratic curve that can be obtained by the proposed method that is combining a variation of standard direct method and Thevenin equivalent model of electric power system. And finally the distance is computed through the Euclid norm of normal vector of the boundary at the closest saddle node bifurcation point. The advantage of the proposed method is that it gets the advantages of both methods, the accuracy of the direct method and simple of Thevenin Equivalent model. Thus, the proposed method holds some promises in terms of performing the real-time voltage stability monitoring of power system. Test results of New England 39 bus system are presented to show the effectiveness of the proposed method.

Attention-based CNN-BiGRU for Bengali Music Emotion Classification

  • Subhasish Ghosh;Omar Faruk Riad
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.47-54
    • /
    • 2023
  • For Bengali music emotion classification, deep learning models, particularly CNN and RNN are frequently used. But previous researches had the flaws of low accuracy and overfitting problem. In this research, attention-based Conv1D and BiGRU model is designed for music emotion classification and comparative experimentation shows that the proposed model is classifying emotions more accurate. We have proposed a Conv1D and Bi-GRU with the attention-based model for emotion classification of our Bengali music dataset. The model integrates attention-based. Wav preprocessing makes use of MFCCs. To reduce the dimensionality of the feature space, contextual features were extracted from two Conv1D layers. In order to solve the overfitting problems, dropouts are utilized. Two bidirectional GRUs networks are used to update previous and future emotion representation of the output from the Conv1D layers. Two BiGRU layers are conntected to an attention mechanism to give various MFCC feature vectors more attention. Moreover, the attention mechanism has increased the accuracy of the proposed classification model. The vector is finally classified into four emotion classes: Angry, Happy, Relax, Sad; using a dense, fully connected layer with softmax activation. The proposed Conv1D+BiGRU+Attention model is efficient at classifying emotions in the Bengali music dataset than baseline methods. For our Bengali music dataset, the performance of our proposed model is 95%.