• Title/Summary/Keyword: Vector optimization

Search Result 471, Processing Time 0.026 seconds

Kernel Adatron Algorithm of Support Vector Machine for Function Approximation (함수근사를 위한 서포트 벡터 기계의 커널 애더트론 알고리즘)

  • Seok, Kyung-Ha;Hwang, Chang-Ha
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.6
    • /
    • pp.1867-1873
    • /
    • 2000
  • Function approximation from a set of input-output pairs has numerous applications in scientific and engineering areas. Support vector machine (SVM) is a new and very promising classification, regression and function approximation technique developed by Vapnik and his group at AT&TG Bell Laboratories. However, it has failed to establish itself as common machine learning tool. This is partly due to the fact that this is not easy to implement, and its standard implementation requires the use of optimization package for quadratic programming (QP). In this appear we present simple iterative Kernel Adatron (KA) algorithm for function approximation and compare it with standard SVM algorithm using QP.

  • PDF

Adaptive ridge procedure for L0-penalized weighted support vector machines

  • Kim, Kyoung Hee;Shin, Seung Jun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.6
    • /
    • pp.1271-1278
    • /
    • 2017
  • Although the $L_0$-penalty is the most natural choice to identify the sparsity structure of the model, it has not been widely used due to the computational bottleneck. Recently, the adaptive ridge procedure is developed to efficiently approximate a $L_q$-penalized problem to an iterative $L_2$-penalized one. In this article, we proposed to apply the adaptive ridge procedure to solve the $L_0$-penalized weighted support vector machine (WSVM) to facilitate the corresponding optimization. Our numerical investigation shows the advantageous performance of the $L_0$-penalized WSVM compared to the conventional WSVM with $L_2$ penalty for both simulated and real data sets.

Fault diagnosis of rotating machinery using multi-class support vector machines (Multi-class SVM을 이용한 회전기계의 결함 진단)

  • 황원우;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.537-543
    • /
    • 2003
  • Condition monitoring and fault diagnosis of machines are gaining importance in the industry because of the need to increase reliability and to decrease possible loss of production due to machine breakdown. By comparing the vibration signals of a machine running in normal and faulty conditions, detection of faults like mass unbalance, shaft misalignment and bearing defects is possible. This paper presents a novel approach for applying the fault diagnosis of rotating machinery. To detect multiple faults in rotating machinery, a feature selection method and support vector machine (SVM) based multi-class classifier are constructed and used in the faults diagnosis. The results in experiments prove that fault types can be diagnosed by the above method.

  • PDF

Combining genetic algorithms and support vector machines for bankruptcy prediction

  • Min, Sung-Hwan;Lee, Ju-Min;Han, In-Goo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2004.11a
    • /
    • pp.179-188
    • /
    • 2004
  • Bankruptcy prediction is an important and widely studied topic since it can have significant impact on bank lending decisions and profitability. Recently, support vector machine (SVM) has been applied to the problem of bankruptcy prediction. The SVM-based method has been compared with other methods such as neural network, logistic regression and has shown good results. Genetic algorithm (GA) has been increasingly applied in conjunction with other AI techniques such as neural network, CBR. However, few studies have dealt with integration of GA and SVM, though there is a great potential for useful applications in this area. This study proposes the methods for improving SVM performance in two aspects: feature subset selection and parameter optimization. GA is used to optimize both feature subset and parameters of SVM simultaneously for bankruptcy prediction.

  • PDF

A two-stage damage detection method for truss structures using a modal residual vector based indicator and differential evolution algorithm

  • Seyedpoor, Seyed Mohammad;Montazer, Maryam
    • Smart Structures and Systems
    • /
    • v.17 no.2
    • /
    • pp.347-361
    • /
    • 2016
  • A two-stage method for damage detection in truss systems is proposed. In the first stage, a modal residual vector based indicator (MRVBI) is introduced to locate the potentially damaged elements and reduce the damage variables of a truss structure. Then, in the second stage, a differential evolution (DE) based optimization method is implemented to find the actual site and extent of damage in the structure. In order to assess the efficiency of the proposed damage detection method, two numerical examples including a 2D-truss and 3D-truss are considered. Simulation results reveal the high performance of the method for accurately identifying the damage location and severity of trusses with considering the measurement noise.

Optimization of Ferromagnetic Resonance Spectra Measuring Procedure for Accurate Gilbert Damping Parameter in Magnetic Thin Films Using a Vector Network Analyzer

  • Kim, D.H.;Kim, H.H.;You, Chun-Yeol;Kim, Hyung-Suk
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.206-210
    • /
    • 2011
  • We optimize a vector network analyzer ferromagnetic resonance (VNA-FMR) measurement system to study spin dynamics and Gilbert damping parameters of thin ferromagnetic films. In order to obtain accurate damping parameters, careful determination of the susceptibility line-width is required. The measured S-parameters are converted into the corresponding susceptibility through a calibration processes. From the line-width measurements, we can successfully extract the saturation magnetizations and Gilbert damping parameters of 5-, 8-, and 10-nm thick $Ni_{81}Fe_{19}$ (Py) films.

A Study on the Automatic Fairing and Modeling System of Hull From (선형의 자동순정 및 모델링 시스템에 관한 연구)

  • 김동준
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.121-127
    • /
    • 2000
  • In this paper a new technique of inverse fairing problem for ship hull is proposed. Recently Lu solved the inverse fairing problem for automobile's body that was made by one surface element. In this system however hull surface is constructed by Gregory's composite surface interpolation method. So reflection line at boundary position is used as a tool of solving inverse problem in surface fairing. But the results are not good. The new concepts of Normal vector line and Constrained reflection line are introduced as an alternative tool. Energy minimization method for Normal Vector Line curve net and the inverse method for Constrained Reflection Line by using optimization technique are examined And the final lines from this proposed surface fairing method shows good fairness.

  • PDF

Fine-tuning SVM for Enhancing Speech/Music Classification (SVM의 미세조정을 통한 음성/음악 분류 성능향상)

  • Lim, Chung-Soo;Song, Ji-Hyun;Chang, Joon-Hyuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.2
    • /
    • pp.141-148
    • /
    • 2011
  • Support vector machines have been extensively studied and utilized in pattern recognition area for years. One of interesting applications of this technique is music/speech classification for a standardized codec such as 3GPP2 selectable mode vocoder. In this paper, we propose a novel approach that improves the speech/music classification of support vector machines. While conventional support vector machine optimization techniques apply during training phase, the proposed technique can be adopted in classification phase. In this regard, the proposed approach can be developed and employed in parallel with conventional optimizations, resulting in synergistic boost in classification performance. We first analyze the impact of kernel width parameter on the classifications made by support vector machines. From this analysis, we observe that we can fine-tune outputs of support vector machines with the kernel width parameter. To make the most of this capability, we identify strong correlation among neighboring input frames, and use this correlation information as a guide to adjusting kernel width parameter. According to the experimental results, the proposed algorithm is found to have potential for improving the performance of support vector machines.

Dynamic response optmization using approximate search (근사 선탐색을 이용한 동적 반응 최적화)

  • Kim, Min-Soo;Choi, Dong-hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.811-825
    • /
    • 1998
  • An approximate line search is presented for dynamic response optimization with Augmented Lagrange Multiplier(ALM) method. This study empolys the approximate a augmented Lagrangian, which can improve the efficiency of the ALM method, while maintaining the global convergence of the ALM method. Although the approximate augmented Lagragian is composed of only the linearized cost and constraint functions, the quality of this approximation should be good since an approximate penalty term is found to have almost second-order accuracy near the optimum. Typical unconstrained optimization algorithms such as quasi-Newton and conjugate gradient methods are directly used to find exact search directions and a golden section method followed by a cubic polynomial approximation is empolyed for approximate line search since the approximate augmented Lagrangian is a nonlinear function of design variable vector. The numberical performance of the proposed approach is investigated by solving three typical dynamic response optimization problems and comparing the results with those in the literature. This comparison shows that the suggested approach is robust and efficient.

3D Optimal Design of Transformer Tank Shields using Design Sensitivity Analysis

  • Yingying Yao;Ryu, Jae-Seop;Koh, Chang-Seop;Dexin Xie
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.23-31
    • /
    • 2003
  • A novel 3D shape optimization algorithm is presented for electromagnetic devices carry-ing eddy current. The algorithm integrates the 3D finite element performance analysis and the steepest descent method with design sensitivity and mesh relocation method. For the design sensitivity formula, the adjoint variable vector is defined in complex form based on the 3D finite element method for eddy current problems. A new 3D mesh relocation method is also proposed using the deformation theory of the elastic body under stress to renew the mesh as the shape changes. The design sensitivity f3r the sur-face nodal points is also systematically converted into that for the design variables for the parameterized optimization application. The proposed algorithm is applied to the optimum design of the tank shield model of the transformer and the effectiveness is proved.