• Title/Summary/Keyword: Vector channel

Search Result 378, Processing Time 0.024 seconds

Vibration Filter Using Vector Channel Periodic Lattice

  • Hwang, Won-Gul;Im, Hyung-Eun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2043-2051
    • /
    • 2006
  • This paper considered identification of vibration characteristics of flexible structure with vector channel periodic lattice filter. We present an algorithm for AR coefficients for the vector-channel lattice filters, and characteristic equation and transfer function are derived from these coefficients. Vibration lattice filter is then constructed from the vector channel lattice filter, and performance of this vibration filter is tested with a test signal which is a combination of many sine waves to compare the performance of scalar and vector channel lattice. Also it is applied to the cantilever data to identify properties of the system, such as natural frequencies and damping ratios, to show its performance.

SLNR-based Precoder Design in Multiuser Interference Channel with Channel Estimation Error

  • Seo, Bangwon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.40-52
    • /
    • 2020
  • In this paper, we consider a precoder design problem for multiuser interference channel. Most of the conventional schemes for precoder design utilize a signal-to-interference-plus-noise ratio (SINR) as a cost function. However, since the SINR metric of a desired transmitter-receiver pair is a function of precoding vectors of all transmitters in the multiuser interference channel, an analytic closed-form solution is not available for the precoding vector of a desired transmitter that maximizes the SINR metric. To eliminate coupling between the precoding vectors of all transmitters and to find a closed-form solution for the precoding vector of the desired transmitter, we use a signal-to-leakage-plus-noise ratio (SLNR) instead as a cost function because the SLNR at a transmitter is a function of the precoding vector of the desired transmitter only. In addition, channel estimation errors for undesired links are considered when designing the precoding vector because they are inevitable in a multiuser interference channel. In this case, we propose a design scheme for the precoding vector that is robust to the channel estimation error. In the proposed scheme, the precoding vector is designed to maximize the worst-case SLNR. Through computer simulation, we show that the proposed scheme has better performance than the conventional scheme in terms of SLNR, SINR, and sum rate of all users.

Frequency translation approach for transmission beamforming in FDD wireless communication systems with basestation arrays (기지국 안테나 배열을 이용한 FDD 방식의 무선통신 시스템에서 송신 빔 형성을 위한 주파수 변환 방식)

  • ;Shawn P.Stapleton
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.5
    • /
    • pp.1-14
    • /
    • 1997
  • We consider transmission beamforming techniques for frequency-division-duplex (FDD) wireless communication systems using adaptive arrays to improve the signal quality of the array transmission link. We develop a simple effective transmission beamforming technique based on an approximated frequency tranlsation (AFT) to derive the tranmsiion beamforming weights from the uplink channel vector. This technique exploits the invariance of the short-time averaged fast fading statistics to small frequency translations. A simple approximate relationship that relates the transmission channel vector to the reception channel vector is derived. We have developed its practical alternative in which the frequency translation of the channel vector is performed at the principal angle of arrival (AOA) of the u;link synthestic angular spectrum instead of the mean AOA. To analyze the performance of the proposed methods, we consider the power loss incurred by applying the estimated channel vector instead of the true downlink channel vector. The performance is analyzed as a function of the mean AOA, the angular spread, the number of elements, frequncy difference between the uplink and the downlink, and the angle distribution. Their performance is also compared with that of the direct weight reuse method and the AOA based methods.

  • PDF

A Causality Analysis of the Hairtail Price by Distribution Channel Using a Vector Autoregressive Model (VAR 모형을 이용한 유통단계별 갈치가격의 인과성 분석)

  • Kim, Cheol-Hyun;Nam, Jong-Oh
    • The Journal of Fisheries Business Administration
    • /
    • v.46 no.1
    • /
    • pp.93-107
    • /
    • 2015
  • This study aims to analyze causalities among Hairtail prices by distribution channel using a vector autoregressive model. This study applies unit-root test for stability of data, uses Granger causality test to know interaction among Hairtail Prices by distribution channel, and employes the vector autoregressive model to estimate statistical impacts among t-2 period variables used in model. Analyzing results of this study are as follows. First, ADF, PP, and KPSS tests show that the change rate of Hairtail price by distribution channel differentiated by logarithm is stable. Second, a Granger causality test presents that the producer price of Hairtail leads the wholesale price and then the wholesale price leads the consumer price. Third, the vector autoregressive model suggests that the change rate of Hairtail producer price of t-2 period variables statistically, significantly impacts change rates of own, wholesale, and consumer prices at current period. Fourth, the impulse response analysis indicates that impulse responses of the structural shocks with a respectively distribution channel of the Hairtail prices are relatively more powerful in own distribution channel than in other distribution channels. Fifth, a forecast error variance decomposition of the Hairtail prices points out that the own price has relatively more powerful influence than other prices.

Adaptive Blind MMSE Equalization for SIMO Channel

  • Ahn, Kyung-Seung;Baik, Heung-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.8A
    • /
    • pp.753-762
    • /
    • 2002
  • Blind equalization of transmission channel is important in communication areas and signal processing applications because it does not need training sequences, nor dose it require a priori channel information. In this paper, an adaptive blind MMSE channel equalization technique based on second-order statistics in investigated. We present an adaptive blind MMSE channel equalization using multichannel linear prediction error method for estimating cross-correlation vector. They can be implemented as RLS or LMS algorithms to recursively update the cross-correlation vector. Once cross-correlation vector is available, it can be used for MMSE channel equalization. Unlike many known subspace methods, our proposed algorithms do not require channel order estimation. Therefore, our algorithms are robust to channel order mismatch. Performance of our algorithms and comparisons with existing algorithms are shown for real measured digital microwave channel.

Estimation of system parameters by vector channel lattice filter (벡터채널 격자필터를 이용한 시스템 파라미터 추정)

  • 장세경;황원걸;기창두
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.917-922
    • /
    • 1992
  • Resently there have been increasing interests in adaptive identification and control of flexible structures. In this paper, vector channel lattice filters and their applications to parameter identification of flexible structures are studied. Numerical examples are given to show its performace to estimate the natural frequencies of 5-mass system. It is observed that vector channel lattice filter convetges quickly and identifies modal frequencies even when some of them is unobservable for some measurements. Experimental results demonstrated the ability of the lattice filter to identify the natural frequencies and the damping ratios of cantilever beam and pipe.

  • PDF

MIMO Vector Channel Modeling and Performance Analysis in Underwater Channel Environments (수중 MIMO 벡터 채널 모델링 및 성능 분석)

  • Lee, Deok-Hwan;Ko, Hak-Lim;Lim, Yong-Kon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.8
    • /
    • pp.426-431
    • /
    • 2007
  • In this paper we have studied the underwater vector channel modeling for MIMO(Multiple Input Multiple Output) to increase the performance and efficiency for ultrasound communication in underwater channel environments. Also we have analyzed the MIMO techniques using the proposed channel modeling. For underwater MIMO channel modeling. experiments were done in real channel environments and the data were analyzed to estimate parameters such as fading, Doppler, time delay, angle of arrival, and receiving power. These were used for modeling of underwater vector channel modeling for MIMO. Additionally, we have analyzed the performance of MIMO systems using our proposed channel models. As a result we could see that the BER has decreased severely with the same SNR when using the MIMO system.

Microphone Array Based Speech Enhancement Using Independent Vector Analysis (마이크로폰 배열에서 독립벡터분석 기법을 이용한 잡음음성의 음질 개선)

  • Wang, Xingyang;Quan, Xingri;Bae, Keunsung
    • Phonetics and Speech Sciences
    • /
    • v.4 no.4
    • /
    • pp.87-92
    • /
    • 2012
  • Speech enhancement aims to improve speech quality by removing background noise from noisy speech. Independent vector analysis is a type of frequency-domain independent component analysis method that is known to be free from the frequency bin permutation problem in the process of blind source separation from multi-channel inputs. This paper proposed a new method of microphone array based speech enhancement that combines independent vector analysis and beamforming techniques. Independent vector analysis is used to separate speech and noise components from multi-channel noisy speech, and delay-sum beamforming is used to determine the enhanced speech among the separated signals. To verify the effectiveness of the proposed method, experiments for computer simulated multi-channel noisy speech with various signal-to-noise ratios were carried out, and both PESQ and output signal-to-noise ratio were obtained as objective speech quality measures. Experimental results have shown that the proposed method is superior to the conventional microphone array based noise removal approach like GSC beamforming in the speech enhancement.

Vector Channel Simulator Design for Underwater Acoustic-based Communications

  • Kim, Duk-Yung;Kim, Yong-Deak;Lim, Yong-Kon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1E
    • /
    • pp.18-24
    • /
    • 2002
  • This paper discusses the development of an acoustic vector channel simulator for the performance analysis of an acoustic digital communication system. The channel simulator consists of transmission module, acoustic channel model, receiver, beamformer, and adaptive equalizer. The source signal (QPSK) is generated by the specified parameters. The transmitted signal generates multipath signals which have a different delay, amplitude and doppler frequency. The paper presents in details the approach to the performance analysis of an acoustic digital communication system according to the antenna structure and the various baseband signal processing techniques.

Codebook based Direct Vector Quantization of MIMO Channel Matrix with Channel Normalization

  • Hui, Bing;Chang, KyungHi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.3
    • /
    • pp.155-157
    • /
    • 2014
  • In this paper, a novel codebook generation strategy is proposed. With the given codebooks, two codeword selection procedures are proposed and analyzed for generating the quantized multiple-input multiple-output (MIMO) channel state information (CSI). Furthermore, three different quantization and normalization strategies are analyzed. The simulation results suggest that the proposed 'quantized channel generation method 2' is the best strategy to reduce the quantization and normalization errors to generate the final quantized MIMO CSI.