• Title/Summary/Keyword: Vector analysis

Search Result 3,506, Processing Time 0.035 seconds

WLDF: Effective Statistical Shape Feature for Cracked Tongue Recognition

  • Li, Xiao-qiang;Wang, Dan;Cui, Qing
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.420-427
    • /
    • 2017
  • This paper proposes a new method using Wide Line Detector based statistical shape Feature (WLDF) to identify whether or not a tongue is cracked; a cracked tongue is one of the most frequently used visible features for diagnosis in traditional Chinese Medicine (TCM). We first detected a wide line in the tongue image, and then extracted WLDF, such as the maximum length of each detected region, and the ratio between maximum length and the area of the detected region. We trained a binary support vector machine (SVM) based on the WLDF to build a classifier for cracked tongues. We conducted an experiment based on our proposed scheme, using 196 samples of cracked tongues and 245 samples of non-cracked tongues. The results of the experiment indicate that the recognition accuracy of the proposed method is greater than 95%. In addition, we provide an analysis of the results of this experiment with different parameters, demonstrating the feasibility and effectiveness of the proposed scheme.

A Study on the Flow Characteristics in T-type Rectangular Duct (T-TYPE 사각덕트내의 유동특성 연구)

  • Lee, Haeng-Nam;Park, Gil-Moon;Lee, Duck-Gu
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.702-707
    • /
    • 2001
  • The characteristics of flow in dividing regions are precise, therefore their classification is very important not only in industry but also in hydrodynamics. By now, many studies of flow in dividing regions have been performed, but flow characteristics that use visualization in dividing regions have not been studied. The present study of the PIV and the CFD exhibit average velocity distributions, kinetic energy distributions and total pressure distributions etc of the total flow field due to the development of the accurate visualization optical laser and of optical equipment. Also, PIV is accurate with the flows characteristics of the dividing region as continuous analysis is done using input equipment. The study analyzes average velocity vector field, average kinetic energy, x-axis stress distributions, average and total pressure distributions of dividing regions with flow for visualization of the PIV and the CFD measurement in a dividing rectangular duct.

  • PDF

A 3 Dimensional Characteristic Analysis of SLIM by the 2-D Finite Element Method (2차원 유한요소법에 의한 SLIM의 3차원적 특성 해석)

  • Cho, Yun-Hyun;Kim, Yong-Joo;Shin, Pan-Seok;Kang, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.37-42
    • /
    • 1990
  • In order to obtain optimal design criteria and operating parameters, a Single-sided Linear Induction Motor (SLIM) is analysed by using a 2-D finite element method with magnetic and current vector potential. In the analysing procedures, the governing equation is derived from Maxwell's equation combined with the magnetic vector potential. As a forcing term, 3-phase voltage source is employed using the Kirchhoff's voltage law in order to look into effects of the unbalanced 3-phase currents and air gap flux density. Also, 2ndary eddy current distribution, longitudinal end and transverse edge effects are in turns visualized by flux lines in 3 different analysing planes as functions of frequency and input power.

  • PDF

Magnetic Field Computations of the Magnetic Circuits with Permanent Magnets using Finite Element Method (유한요소법을 이용한 영구자석 자기회로의 자석 해석)

  • 박영건;정현규;한송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.5
    • /
    • pp.167-172
    • /
    • 1984
  • This paper describes the finite element analysis of magnetostatic field problems with permanent magnets. Two kinds of algorithms, one using the magnetic vector potential and the other using the magnetic scalar potential, are introduced. The magnetization of the pemanent magnet is used as the source instead of the magnetic equivalent current in both of the formulations using the magnetic vector potential and the magnetic scalar potential. A simple functional, which has only the region integral instead of the region integral and boundary integral, is derived in the formulation using the magnetic scalar potential. These make the formulation of the system equations simpler and more convenient than the conventional methods. The numerical results by the two proposed algorithms for a C-type permanent magnet model are compared with the analytic solutions respectively. The numerical results are in good agreement with the analytic solutions.

  • PDF

Feature Vector Extraction using Time-Frequency Analysis and its Application to Power Quality Disturbance Classification (시간-주파수 해석 기법을 이용한 특징벡터 추출 및 전력 외란 신호 식별에의 응용)

  • 이주영;김기표;남상원
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.619-622
    • /
    • 2001
  • In this paper, an efficient approach to classification of transient and harmonic disturbances in power systems is proposed. First, the Stop-and-Go CA CFAR Detector is utilized to detect a disturbance from the power signals which are mixed with other disturbances and noise. Then, (i) Wigner Distribution, SVD(Singular Value Decomposition) and Fisher´s Criterion (ii) DWT and Fisher´s Criterion, are applied to extract an efficient feature vector. For the classification procedure, a combined neural network classifier is proposed to classify each corresponding disturbance class. Finally, the 10 class data simulated by Matlab power system blockset are used to demonstrate the performance of the proposed classification system.

  • PDF

Numerical Analysis of the Electromagnetic Waves scattered from a dielectric sphere by the BEM (경계요소법에 의한 3차원 유전체 구의 산란파 수치해석)

  • 김정혜
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.02a
    • /
    • pp.64-68
    • /
    • 1990
  • Boundary element method using linear basis function is applied to obtain fields scattered from a 3-D dielectric sphere. Electric field integral equation is used on the surfaces of the dielectric material where its surface is discretized into trilateral cells. For plane wave incidence, scattered fields by a dielectric sphere is calculated and compared with its analytic solution. The total electric fields are calculated on the great circle of the sphere boundary as well as the outside of the sphere in the plane of the wave vector and the polarization vector of the incident electric field.

  • PDF

A Study on Speech Recognition using Vocal Tract Area Function (성도 면적 함수를 이용한 음성 인식에 관한 연구)

  • 송제혁;김동준
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.345-352
    • /
    • 1995
  • The LPC cepstrum coefficients, which are an acoustic features of speech signal, have been widely used as the feature parameter for various speech recognition systems and showed good performance. The vocal tract area function is a kind of articulatory feature, which is related with the physiological mechanism of speech production. This paper proposes the vocal tract area function as an alternative feature parameter for speech recognition. The linear predictive analysis using Burg algorithm and the vector quantization are performed. Then, recognition experiments for 5 Korean vowels and 10 digits are executed using the conventional LPC cepstrum coefficients and the vocal tract area function. The recognitions using the area function showed the slightly better results than those using the conventional LPC cepstrum coefficients.

  • PDF

Prediction of the Radiated Emission(RE)s due to the PCB Power-Bus' Resonance Modes and Mitigation of the RE Levels

  • Kahng, Sung-Tek
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.1
    • /
    • pp.7-11
    • /
    • 2007
  • PCB Power-Bus (comprising power/ground planes) impedance and fields are evaluated by an efficient series expansion method that is suggested in this paper. It is used to investigate the structure's radiated emission(RE) levels and find acceptable ways of loading the power/ground planes such as decoupling capcitor(DeCap)s, balanced feeding and slits, in order to reduce the interferences. Also, the calculations and measurements of a proposed geometry are verified by vector fitting as a analysis model to check the behavior of the slit.

The Classification of Roughness fir Machined Surface Image using Neural Network (신경회로망을 이용한 가공면 영상의 거칠기 분류)

  • 사승윤
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.2
    • /
    • pp.144-150
    • /
    • 2000
  • Surface roughness is one of the most important parameters to estimate quality of products. As this reason so many studies were car-ried out through various attempts that were contact or non-contact using computer vision. Even through these efforts there were few good results in this research., however texture analysis making a important role to solve these problems in various fields including universe aviation living thing and fibers. In this study feature value of co-occurrence matrix was calculated by statistic method and roughness value of worked surface was classified, of it. Experiment was carried out using input vector of neural network with characteristic value of texture calculated from worked surface image. It's found that recognition rate of 74% was obtained when adapting texture features. In order to enhance recogni-tion rate combination type in characteristics value of texture was changed into input vector. As a result high recognition rate of 92.6% was obtained through these processes.

  • PDF

A Classifier for Textured Images Based on Matrix Feature (행렬 속성을 이용하는 질감 영상 분별기)

  • 김준철;이준환
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.3
    • /
    • pp.91-102
    • /
    • 1994
  • For the analysis of textured image, it requires large storage space and computation time to calculate the matrix features such as SGLDM(Spatial Gray Level Dependence Matrix). NGLDM(Neighboring Gray Level Dependence Matrix). NSGLDM(Neighboring Spatial Gray Level Dependence Matrix) and GLRLM(Gray Level Run Length Matrix). In spite of a large amount of information that each matrix contains, a set of several correlated scalar features calculated from the matrix is not sufficient to approximate it. In this paper, we propose a new classifier for textured images based on these matrices in which the projected vectors of each matrix on the meaningful directions are used as features. In the proposed method, an unknown image is classified to the class of a known image that gives the maximum similarity between the projected model vector from the known image and the vector from the unknown image. In the experiment to classify images of agricultural products, the proposed method shows good performance as much as 85-95% of correct classification ratio.

  • PDF