• Title/Summary/Keyword: Vector analysis

Search Result 3,506, Processing Time 0.038 seconds

Static and quasi-static slope stability analyses using the limit equilibrium method for mountainous area

  • Hosung Shin
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.187-195
    • /
    • 2023
  • Intensive rainfall during the summer season in Korea has triggered numerous devastating landslides outside of downtown in mountainous areas. The 2D slope stability analysis that is generally used for cut slopes and embankments is inadequate to model slope failure in mountainous areas. This paper presents a new 3D slope stability formulation using the global sliding vector in the limit equilibrium method, and it uses an ellipsoidal slip surface for static and quasi-static analyses. The slip surface's flexibility of the ellipsoid shape gives a lower FS than the spherical failure shape in the Fellenius, Bishop, and Janbu's simplified methods. The increasing sub-columns of each column tend to increase the FS and converge to a steady value. The symmetrical geometric conditions of the convex turning corners do not indicate symmetrical failure of the surface in 3D analysis. Pseudo-static analysis shows that the horizontal seismic force decreases the FS and increases the mass volume at the critical failure state. The stability index takes the FS and corresponding sliding mass into consideration to assess the potential risk of slope failure in complex mountainous terrain. It is a valuable parameter for selecting a vulnerable area and evaluating the overall risk of slope failure.

Support Vector Machine Based Arrhythmia Classification Using Reduced Features

  • Song, Mi-Hye;Lee, Jeon;Cho, Sung-Pil;Lee, Kyoung-Joung;Yoo, Sun-Kook
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.571-579
    • /
    • 2005
  • In this paper, we proposed an algorithm for arrhythmia classification, which is associated with the reduction of feature dimensions by linear discriminant analysis (LDA) and a support vector machine (SVM) based classifier. Seventeen original input features were extracted from preprocessed signals by wavelet transform, and attempts were then made to reduce these to 4 features, the linear combination of original features, by LDA. The performance of the SVM classifier with reduced features by LDA showed higher than with that by principal component analysis (PCA) and even with original features. For a cross-validation procedure, this SVM classifier was compared with Multilayer Perceptrons (MLP) and Fuzzy Inference System (FIS) classifiers. When all classifiers used the same reduced features, the overall performance of the SVM classifier was comprehensively superior to all others. Especially, the accuracy of discrimination of normal sinus rhythm (NSR), arterial premature contraction (APC), supraventricular tachycardia (SVT), premature ventricular contraction (PVC), ventricular tachycardia (VT) and ventricular fibrillation (VF) were $99.307\%,\;99.274\%,\;99.854\%,\;98.344\%,\;99.441\%\;and\;99.883\%$, respectively. And, even with smaller learning data, the SVM classifier offered better performance than the MLP classifier.

Vector Analysis on the Quick Torque Control of Induction Motors (유도전동기의 토크 속응제어법에 관한 벡터적해석)

  • Jeong, Seok-Kwon;Yang, Joo-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.4
    • /
    • pp.393-401
    • /
    • 1995
  • In this paper, vector analysis on the novel quick torque control of Induction Motors(I.M) based on voltage-controlled type is conducted. It was very difficult to get a step response of torque when the primary voltage was selected as control input of induction motors in conventional quick torque control methods. To solve this problem, the new control method was developed using a new concept of pulse addition which can realize the stepwise torque response of a specified settling time of $\Delta$. The new method was successfully confirmed through DSP(Digital Signal Processor) system-based experiments. However, it was a little difficult to understand the control mechanism intutionally. The purpose of this paper is to provide more understanding about the quick torque control mechanism using the vector analysis.

  • PDF

Sentiment Analysis System Using Stanford Sentiment Treebank (스탠포드 감성 트리 말뭉치를 이용한 감성 분류 시스템)

  • Lee, Songwook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.274-279
    • /
    • 2015
  • The main goal of this research is to build a sentiment analysis system which automatically determines user opinions of the Stanford Sentiment Treebank in terms of three sentiments such as positive, negative, and neutral. Firstly, sentiment sentences are POS tagged and parsed to dependency structures. All nodes of the Treebank and their polarities are automatically extracted from the Treebank. We train two Support Vector Machines models. One is for a node level classification and the other is for a sentence level. We have tried various type of features such as word lexicons, POS tags, Sentiment lexicons, head-modifier relations, and sibling relations. Though we acquired 74.2% in accuracy on the test set for 3 class node level classification and 67.0% for 3 class sentence level classification, our experimental results for 2 class classification are comparable to those of the state of art system using the same corpus.

Analysis of the Likelihood of Successful Defibrillation as a Change of Cardiopulmonary Resuscitation Transition using Support Vector Machine (서포트 벡터 머신을 이용한 심폐소생술 변이의 변화에 따른 제세동 성공률 분석)

  • Jang, Seung-Jin;Hwang, Sung-Oh;Lee, Hyun-Sook;Yoon, Young-Ro
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.556-568
    • /
    • 2007
  • Unsatisfied results of return of spontaneous circulation (ROSC) estimates were caused by the fact that the predictability of the predictors was insufficient. This unmet estimate of the predictors may be affected by transitional events due to behaviors which occur during cardiopulmonary resuscitation (CPR). We thus hypothesized that the discrepancy of ROSC estimates found in statistical characteristics due to transitional CPR events, may affect the performance of the predictors, and that the performance of the classifier dichotomizing between ROSC and No-ROSC might be different during CPR. In a canine model (n=18) of prolonged ventricular fibrillation (VF), standard CPR was provided with administration of two doses of epinephrine 0 min or 3 min later of the onset of CPR. For the analysis of the likelihood of a successful defibrillation during CPR, Support Vector Classification was adopted to evaluate statistical peculiarity combining time and frequency based predictors: median frequency, frequency band-limited power spectrum, mean segment amplitude, and zero crossing rates. The worst predictable period showed below about 1 min after the onset of CPR, and the best predictable period could be observed from about 1.5 min later of the administering epinephrine through 2.0-2.2 min. As hypothesized, the discrepancy of statistical characteristics of the predictors was reflected in the differences of the classification performance during CPR. These results represent a major improvement in defibrillation prediction can be achieved by a specific timing of the analysis, as a change in CPR transition.

Multiresolution Model for Vector Fields Defined over Curvilinear Grids (곡선 그리드상에 정의된 벡터 필드를 위한 다해상도 모형)

  • 정일홍;장우현;조세홍;이봉환
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.5
    • /
    • pp.542-549
    • /
    • 2000
  • This Paper presents the development of multiresolution model for the analysis and visualization of two-dimensional flows over curvilinear grids. Multiresolution analysis provides a useful and efficient tool to represent shape and to analyze features at multiple level of detail. Applying multiresolution analysis to vector field visualization is very useful and powerful as the vector field's data sets are usually huge and complex. Using approximation at lower resolution, brief outline of topology can be extracted in short periods of time. Local reconstruction allows the user to zoom in or out, only by reconstructing the portion of interest. This new model is based upon nested spaces of piecewise defined function over nested curvilinear grid domains. The nested domains are selected so as to maintain the original geometry of the inner boundary. This paper presents the refinement and decomposition equations for Haar wavelet over these domains and shows some examples.

  • PDF

Comparison of the performance of classification algorithms using cytotoxicity data (세포독성 자료를 이용한 분류 알고리즘 성능 비교)

  • Yoon, Yeochang;Jeung, Eui Bae;Jo, Na Rae;Ju, Su In;Lee, Sung Duck
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.3
    • /
    • pp.417-426
    • /
    • 2018
  • An alternative developmental toxicity test using mouse embryonic stem cell derived embryoid bodies has been developed. This alternative method is not to administer chemicals to animals, but to treat chemicals with cells. This study suggests the use of Discriminant Analysis, Support Vector Machine, Artificial Neural Network and k-Nearest Neighbor. Algorithm performance was compared with accuracy and a weighted Cohen's kappa coefficient. In application, various classification techniques were applied to cytotoxicity data to classify drug toxicity and compare the results.

Context Aware Feature Selection Model for Salient Feature Detection from Mobile Video Devices (모바일 비디오기기 위에서의 중요한 객체탐색을 위한 문맥인식 특성벡터 선택 모델)

  • Lee, Jaeho;Shin, Hyunkyung
    • Journal of Internet Computing and Services
    • /
    • v.15 no.6
    • /
    • pp.117-124
    • /
    • 2014
  • Cluttered background is a major obstacle in developing salient object detection and tracking system for mobile device captured natural scene video frames. In this paper we propose a context aware feature vector selection model to provide an efficient noise filtering by machine learning based classifiers. Since the context awareness for feature selection is achieved by searching nearest neighborhoods, known as NP hard problem, we apply a fast approximation method with complexity analysis in details. Separability enhancement in feature vector space by adding the context aware feature subsets is studied rigorously using principal component analysis (PCA). Overall performance enhancement is quantified by the statistical measures in terms of the various machine learning models including MLP, SVM, Naïve Bayesian, CART. Summary of computational costs and performance enhancement is also presented.

Effective Face Detection Using Principle Component Analysis and Support Vector Machine (주성분 분석과 서포트 백터 머신을 이용한 효과적인 얼굴 검출 시스템)

  • Kang, Byoung-Doo;Kwon, Oh-Hwa;Seong, Chi-Young;Jeon, Jae-Deok;Eom, Jae-Sung;Kim, Jong-Ho;Lee, Jae-Won;Kim, Sang-Kyoon
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.11
    • /
    • pp.1435-1444
    • /
    • 2006
  • We present an effective and real-time face detection method based on Principal Component Analysis(PCA) and Support Vector Machines(SVMs). We extract simple Haar-like features from training images that consist of face and non-face images, reinterpret the features with PCA, and select useful ones from the large number of extracted features. With the selected features, we construct a face detector using an SVM appropriate for binary classification. The face detector is not affected by the size of a training data set in a significant way, so that it showed 90.1 % detection rates with a small quantity of training data. it can process 8 frames per second for $320{\times}240$ pixel images. This is an acceptable processing time for a real-time system.

  • PDF

Evaluation of Classification Algorithm Performance of Sentiment Analysis Using Entropy Score (엔트로피 점수를 이용한 감성분석 분류알고리즘의 수행도 평가)

  • Park, Man-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.9
    • /
    • pp.1153-1158
    • /
    • 2018
  • Online customer evaluations and social media information among a variety of information sources are critical for businesses as it influences the customer's decision making. There are limitations on the time and money that the survey will ask to identify a variety of customers' needs and complaints. The customer review data at online shopping malls provide the ideal data sources for analyzing customer sentiment about their products. In this study, we collected product reviews data on the smartphone of Samsung and Apple from Amazon. We applied five classification algorithms which are used as representative sentiment analysis techniques in previous studies. The five algorithms are based on support vector machines, bagging, random forest, classification or regression tree and maximum entropy. In this study, we proposed entropy score which can comprehensively evaluate the performance of classification algorithm. As a result of evaluating five algorithms using an entropy score, the SVMs algorithm's entropy score was ranked highest.