• Title/Summary/Keyword: Vector Similarity Matching

Search Result 28, Processing Time 0.021 seconds

Finger-Knuckle-Print Verification Using Vector Similarity Matching of Keypoints (특징점간의 벡터 유사도 정합을 이용한 손가락 관절문 인증)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.9
    • /
    • pp.1057-1066
    • /
    • 2013
  • Personal verification using finger-knuckle-print(FKP) uses lines and creases at the finger-knuckle area, so the orientation information of texture is an important feature. In this paper, we propose an effective FKP verification method which extracts keypoints using SIFT algorithm and matches the keypoints by vector similarity. The vector is defined as a direction vector which connects a keypoint extracted from a query image and a corresponding keypoint extracted from a reference image. Since the direction vector is created by a pair of local keypoints, the direction vector itself represents only a local feature. However, it has an advantage of expanding a local feature to a global feature by comparing the vector similarity among vectors in two images. The experimental results show that the proposed method is superior to the previous methods based on orientation codes.

Genetic lesion matching algorithm using medical image (의료영상 이미지를 이용한 유전병변 정합 알고리즘)

  • Cho, Young-bok;Woo, Sung-Hee;Lee, Sang-Ho;Han, Chang-Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.960-966
    • /
    • 2017
  • In this paper, we proposed an algorithm that can extract lesion by inputting a medical image. Feature points are extracted using SIFT algorithm to extract genetic training of medical image. To increase the intensity of the feature points, the input image and that raining image are matched using vector similarity and the lesion is extracted. The vector similarity match can quickly lead to lesions. Since the direction vector is generated from the local feature point pair, the direction itself only shows the local feature, but it has the advantage of comparing the similarity between the other vectors existing between the two images and expanding to the global feature. The experimental results show that the lesion matching error rate is 1.02% and the processing speed is improved by about 40% compared to the case of not using the feature point intensity information.

Image Registration of Aerial Image Sequences (연속 항공영상에서의 Image Registration)

  • 강민석;김준식;박래홍;이쾌희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.4
    • /
    • pp.48-57
    • /
    • 1992
  • This paper addresses the estimation of the shift vector from aerial image sequences. The conventional feature-based and area-based matching methods are simulated for determining the suitable image registration scheme. Computer simulations show that the feature-based matching schemes based on the co-occurrence matrix, autoregressive model, and edge information do not give a reliable matching for aerial image sequences which do not have a suitable statistical model or significant features. In area-based matching methods we try various similarity functions for a matching measure and discuss the factors determining the matching accuracy. To reduce the estimation error of the shift vector we propose the reference window selection scheme. We also discuss the performance of the proposed algorithm based on the simulation results.

  • PDF

Medical Image Retrieval based on Multi-class SVM and Correlated Categories Vector

  • Park, Ki-Hee;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8C
    • /
    • pp.772-781
    • /
    • 2009
  • This paper proposes a novel algorithm for the efficient classification and retrieval of medical images. After color and edge features are extracted from medical images, these two feature vectors are then applied to a multi-class Support Vector Machine, to give membership vectors. Thereafter, the two membership vectors are combined into an ensemble feature vector. Also, to reduce the search time, Correlated Categories Vector is proposed for similarity matching. The experimental results show that the proposed system improves the retrieval performance when compared to other methods.

Image Registration Using an LPC Distance (LPC거리를 이용한 영상 Registration)

  • Lee, Kyung Moo;Lee, Sang Uk
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.1
    • /
    • pp.35-45
    • /
    • 1987
  • For the registration problem in which the matching of two images is made, a new algorithm using an 1-D LPC model was proposed. The proposed algorithm employed LPC coefficients as feature vector of an image. The similarity of two images was measured using an LPC distance, proposed by Itakura, between each image's feature vector. The comparision of performance with normalized correlation method and template matching method was made by a computer simulation with several real images. The results of simulation showed that the proposed algorithm was more robust to image intensity variation and computationall efficient.

  • PDF

Pattern Similarity Retrieval of Data Sequences for Video Retrieval System (비디오 검색 시스템을 위한 데이터 시퀀스 패턴 유사성 검색)

  • Lee Seok-Lyong
    • The KIPS Transactions:PartD
    • /
    • v.13D no.3 s.106
    • /
    • pp.347-356
    • /
    • 2006
  • A video stream can be represented by a sequence of data points in a multidimensional space. In this paper, we introduce a trend vector that approximates values of data points in a sequence and represents the moving trend of points in the sequence, and present a pattern similarity matching method for data sequences using the trend vector. A sequence is partitioned into multiple segments, each of which is represented by a trend vector. The query processing is based on the comparison of these vectors instead of scanning data elements of entire sequences. Using the trend vector, our method is designed to filter out irrelevant sequences from a database and to find similar sequences with respect to a query. We have performed an extensive experiment on synthetic sequences as well as video streams. Experimental results show that the precision of our method is up to 2.1 times higher and the processing time is up to 45% reduced, compared with an existing method.

A Quantification Method of Human Body Motion Similarity using Dynamic Time Warping for Keypoints Extracted from Video Streams (동영상에서 추출한 키포인트 정보의 동적 시간워핑(DTW)을 이용한 인체 동작 유사도의 정량화 기법)

  • Im, June-Seok;Kim, Jin-Heon
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1109-1116
    • /
    • 2020
  • The matching score evaluating human copying ability can be a good measure to check children's developmental stages, or sports movements like golf swing and dance, etc. It also can be used as HCI for AR, VR applications. This paper presents a method to evaluate the motion similarity between demonstrator who initiates movement and participant who follows the demonstrator action. We present a quantification method of the similarity which utilizes Euclidean L2 distance of Openpose keypoins vector similarity. The proposed method adapts DTW, thus can flexibly cope with the time delayed motions.

Lossless VQ Indices Compression Based on the High Correlation of Adjacent Image Blocks

  • Wang, Zhi-Hui;Yang, Hai-Rui;Chang, Chin-Chen;Horng, Gwoboa;Huang, Ying-Hsuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2913-2929
    • /
    • 2014
  • Traditional vector quantization (VQ) schemes encode image blocks as VQ indices, in which there is significant similarity between the image block and the codeword of the VQ index. Thus, the method can compress an image and maintain good image quality. This paper proposes a novel lossless VQ indices compression algorithm to further compress the VQ index table. Our scheme exploits the high correlation of adjacent image blocks to search for the same VQ index with the current encoding index from the neighboring indices. To increase compression efficiency, codewords in the codebook are sorted according to the degree of similarity of adjacent VQ indices to generate a state codebook to find the same index with the current encoding index. Note that the repetition indices both on the search path and in the state codebooks are excluded to increase the possibility for matching the current encoding index. Experimental results illustrated the superiority of our scheme over other compression schemes in the index domain.

Modern Methods of Text Analysis as an Effective Way to Combat Plagiarism

  • Myronenko, Serhii;Myronenko, Yelyzaveta
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.8
    • /
    • pp.242-248
    • /
    • 2022
  • The article presents the analysis of modern methods of automatic comparison of original and unoriginal text to detect textual plagiarism. The study covers two types of plagiarism - literal, when plagiarists directly make exact copying of the text without changing anything, and intelligent, using more sophisticated techniques, which are harder to detect due to the text manipulation, like words and signs replacement. Standard techniques related to extrinsic detection are string-based, vector space and semantic-based. The first, most common and most successful target models for detecting literal plagiarism - N-gram and Vector Space are analyzed, and their advantages and disadvantages are evaluated. The most effective target models that allow detecting intelligent plagiarism, particularly identifying paraphrases by measuring the semantic similarity of short components of the text, are investigated. Models using neural network architecture and based on natural language sentence matching approaches such as Densely Interactive Inference Network (DIIN), Bilateral Multi-Perspective Matching (BiMPM) and Bidirectional Encoder Representations from Transformers (BERT) and its family of models are considered. The progress in improving plagiarism detection systems, techniques and related models is summarized. Relevant and urgent problems that remain unresolved in detecting intelligent plagiarism - effective recognition of unoriginal ideas and qualitatively paraphrased text - are outlined.

A Keyword Matching for the Retrieval of Low-Quality Hangul Document Images

  • Na, In-Seop;Park, Sang-Cheol;Kim, Soo-Hyung
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.47 no.1
    • /
    • pp.39-55
    • /
    • 2013
  • It is a difficult problem to use keyword retrieval for low-quality Korean document images because these include adjacent characters that are connected. In addition, images that are created from various fonts are likely to be distorted during acquisition. In this paper, we propose and test a keyword retrieval system, using a support vector machine (SVM) for the retrieval of low-quality Korean document images. We propose a keyword retrieval method using an SVM to discriminate the similarity between two word images. We demonstrated that the proposed keyword retrieval method is more effective than the accumulated Optical Character Recognition (OCR)-based searching method. Moreover, using the SVM is better than Bayesian decision or artificial neural network for determining the similarity of two images.