• Title/Summary/Keyword: Vector Net

Search Result 196, Processing Time 0.019 seconds

Design & Implementation of Lipreading System using the Articulatory Controls Analysis of the Korean 5 Vowels (<<한국어 5모음의 조음적 제어 분석을 이용한 자동 독화에 관한 연구>>)

  • Lee, Kyong-Ho;Kum, Jong-Ju;Rhee, Sang-Bum
    • Journal of the Korea Computer Industry Society
    • /
    • v.8 no.4
    • /
    • pp.281-288
    • /
    • 2007
  • In this paper, we set 6 interesting points around lips. Analyzed and characterized is the distance change of these 6 interesting points when people pronounces 5 vowels of Korean language. 450 data are gathered and analyzed. Based on this analysis, the system is constructed and the recognition experiments are performed. In this system, we used the camera connected to computer to measure the distance vector between 6 interesting points. In the experiment, 80 normal persons were sampled. The observational error between samples was corrected using normalization method. We analyzed with 30 persons and experimented with 50 persons. We constructed three recognition systems and of those the neural net system gave the best recognition result of 87.44 %.

  • PDF

Development of a sdms (Self-diagnostic monitoring system) with prognostics for a reciprocating pump system

  • Kim, Wooshik;Lim, Chanwoo;Chai, Jangbom
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1188-1200
    • /
    • 2020
  • In this paper, we consider a SDMS (Self-Diagnostic Monitoring System) for a reciprocating pump for the purpose of not only diagnosis but also prognosis. We have replaced a multi class estimator that selects only the most probable one with a multi label estimator such that we are able to see the state of each of the components. We have introduced a measure called certainty so that we are able to represent the symptom and its state. We have built a flow loop for a reciprocating pump system and presented some results. With these changes, we are not only able to detect both the dominant symptom as well as others but also to monitor how the degree of severity of each component changes. About the dominant ones, we found that the overall recognition rate of our algorithm is about 99.7% which is slightly better than that of the former SDMS. Also, we are able to see the trend and to make a base to find prognostics to estimate the remaining useful life. With this we hope that we have gone one step closer to the final goal of prognosis of SDMS.

The role of nuclear energy in the correction of environmental pollution: Evidence from Pakistan

  • Mahmood, Nasir;Danish, Danish;Wang, Zhaohua;Zhang, Bin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1327-1333
    • /
    • 2020
  • The global warming phenomenon emerges from the issue of climate change, which attracts the attention of intellectuals towards clean energy sources from dirty energy sources. Among clean sources, nuclear energy is getting immense attention among policymakers. However, the role of nuclear energy in pollution emissions reduction has remained inconclusive and demand for further investigation. Therefore, the current study contributes to extend knowledge by investigating the nexus between nuclear energy, economic growth, and CO2 emissions in a developing country context such as Pakistan for the period between 1973 and 2017. The auto-regressive distributive lag model summarizes the nuclear energy has negative effect on environmental pollution as it releases carbon emission in the environment. Moreover, vector error correction Granger causality provides evidence for bidirectional causality between nuclear energy and carbon emissions. These interesting findings provide new insight, and policy guidelines provided based on these results.

Foreign Investors' Abnormal Trading Behavior in the Time of COVID-19

  • KHANTHAVIT, Anya
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.9
    • /
    • pp.63-74
    • /
    • 2020
  • This study investigates the behavior of foreign investors in the Stock Exchange of Thailand (SET) in the time of coronavirus disease 2019 (COVID-19) as to whether trading is abnormal, what strategy is followed, whether herd behavior is present, and whether the actions destabilize the market. Foreign investors' trading behavior is measured by net buying volume divided by market capitalization, whereas the stock market behavior is measured by logged return on the SET index portfolio. The data are daily from Tuesday, August 28, 2018, to Monday, May 18, 2020. The study extends the conditional-regression model in an event-study framework and extracts the unobserved abnormal trading behavior using the Kalman filtering technique. It then applies vector autoregressions and impulse responses to test for the investors' chosen strategy, herd behavior, and market destabilization. The results show that foreign investors' abnormal trading volume is negative and significant. An analysis of the abnormal trading volume with stock returns reveals that foreign investors are not positive-feedback investors, but rather, they self-herd. Although foreign investors' abnormal trading does not destabilize the market, it induces stock-return volatility of a similar size to normal trade. The methodology is new; the findings are useful for researchers, local authorities, and investors.

A Method of Analyzing ECG to Diagnose Heart Abnormality utilizing SVM and DWT

  • Shdefat, Ahmed;Joo, Moonil;Kim, Heecheol
    • Journal of Multimedia Information System
    • /
    • v.3 no.2
    • /
    • pp.35-42
    • /
    • 2016
  • Electrocardiogram (ECG) signal gives a clear indication whether the heart is at a healthy status or not as the early notification of a cardiac problem in the heart could save the patient's life. Several methods were launched to clarify how to diagnose the abnormality over the ECG signal waves. However, some of them face the problem of lack of accuracy at diagnosis phase of their work. In this research, we present an accurate and successive method for the diagnosis of abnormality through Discrete Wavelet Transform (DWT), QRS complex detection and Support Vector Machines (SVM) classification with overall accuracy rate 95.26%. DWT Refers to sampling any kind of discrete wavelet transform, while SVM is known as a model with related learning algorithm, which is based on supervised learning that perform regression analysis and classification over the data sample. We have tested the ECG signals for 10 patients from different file formats collected from PhysioNet database to observe accuracy level for each patient who needs ECG data to be processed. The results will be presented, in terms of accuracy that ranged from 92.1% to 97.6% and diagnosis status that is classified as either normal or abnormal factors.

Opportunistic Scheduling and Power Control for Cross-Layer Design of Ad Hoc Networks (Ad Hoc네트워크의 Cross-Layer설계를 위한 Opportunistic Scheduling과 Power Control기법)

  • Casaquite Reizel;Ham Byung-Woon;Hwang Won-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9A
    • /
    • pp.856-867
    • /
    • 2006
  • This paper proposes a new algorithm for opportunistic scheduling that take advantage of both multiuser diversity and power control. Motivated by the multicast RTS and priority-based CTS mechanism of OSMA protocol, we propose an opportunistic packet scheduling with power control scheme based on IEEE 802.11 MAC protocol. The scheduling scheme chooses the best candidate receiver for transmission by considering the SINR at the nodes. This mechanism ensures that the transmission would be successful. The power control algorithm on the other hand, helps reduce interference between links and could maximize spatial reuse of the bandwidth. We then formulate a convex optimization problem for minimizing power consumption and maximizing net utility of the system. We showed that if a transmission power vector satisfying the maximum transmission power and SINR constraints of all nodes exist, then there exists an optimal solution that minimizes overall transmission power and maximizes utility of the system.

Effects of Multiple Reflections of Polarized Beam in Laser Grooving (레이저 홈가공에서 편광빔의 다중반사 효과)

  • Bang Se-Yoon;Seong Kwan-Je
    • Journal of Welding and Joining
    • /
    • v.23 no.2
    • /
    • pp.81-89
    • /
    • 2005
  • A numerical model for multiple reflection effects of a polarized beam on laser grooving has been developed. The surface of the treated material is assumed to reflect laser irradiation in a fully specular fashion. Combining electromagnetic wave theory with Fresnel's relation, the reflective behavior of a groove surface can be obtained as well as the change of the polarization status in the reflected wave field. The material surface is divided into a number of rectangular patches using a bicubic surface representation method. The net radiative flux far these patch elements is obtained by standard ray tracing methods. The changing state of polarization of the electric field after reflection was included in the ray tracing method. The resulting radiative flux is combined with a set of three-dimensional conduction equations governing conduction losses into the medium, and the resulting groove shape and depth are found through iterative procedures. It is observed that reflections of a polarized beam play an important role not only in increasing the material removal rate but also in forming different final groove shapes. Comparison with available experimental results for silicon nitride shows good agreement for the qualitative trends of the dependence of groove shapes on the electric field vector orientation.

A Theoretical Framework for Closeness Centralization Measurements in a Workflow-Supported Organization

  • Kim, Min-Joon;Ahn, Hyun;Park, Min-Jae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3611-3634
    • /
    • 2015
  • In this paper, we build a theoretical framework for quantitatively measuring and graphically representing the degrees of closeness centralization among performers assigned to enact a workflow procedure. The degree of closeness centralization of a workflow-performer reflects how near the performer is to the other performers in enacting a corresponding workflow model designed for workflow-supported organizational operations. The proposed framework comprises three procedural phases and four functional transformations, such as discovery, analysis, and quantitation phases, which carry out ICN-to-WsoN, WsoN-to-SocioMatrix, SocioMatrix-to-DistanceMatrix, and DistanceMatrix-to-CCV transformations. We develop a series of algorithmic formalisms for the procedural phases and their transformative functionalities, and verify the proposed framework through an operational example. Finally, we expatiate on the functional expansion of the closeness centralization formulas so as for the theoretical framework to handle a group of workflow procedures (or a workflow package) with organization-wide workflow-performers.

MONITORING SEVERE ACCIDENTS USING AI TECHNIQUES

  • No, Young-Gyu;Kim, Ju-Hyun;Na, Man-Gyun;Lim, Dong-Hyuk;Ahn, Kwang-Il
    • Nuclear Engineering and Technology
    • /
    • v.44 no.4
    • /
    • pp.393-404
    • /
    • 2012
  • After the Fukushima nuclear accident in 2011, there has been increasing concern regarding severe accidents in nuclear facilities. Severe accident scenarios are difficult for operators to monitor and identify. Therefore, accurate prediction of a severe accident is important in order to manage it appropriately in the unfavorable conditions. In this study, artificial intelligence (AI) techniques, such as support vector classification (SVC), probabilistic neural network (PNN), group method of data handling (GMDH), and fuzzy neural network (FNN), were used to monitor the major transient scenarios of a severe accident caused by three different initiating events, the hot-leg loss of coolant accident (LOCA), the cold-leg LOCA, and the steam generator tube rupture in pressurized water reactors (PWRs). The SVC and PNN models were used for the event classification. The GMDH and FNN models were employed to accurately predict the important timing representing severe accident scenarios. In addition, in order to verify the proposed algorithm, data from a number of numerical simulations were required in order to train the AI techniques due to the shortage of real LOCA data. The data was acquired by performing simulations using the MAAP4 code. The prediction accuracy of the three types of initiating events was sufficiently high to predict severe accident scenarios. Therefore, the AI techniques can be applied successfully in the identification and monitoring of severe accident scenarios in real PWRs.

INTEGRATED DIAGNOSTIC TECHNIQUE FOR NUCLEAR POWER PLANTS

  • Gofuku, Akio
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.725-736
    • /
    • 2014
  • It is very important to detect and identify small anomalies and component failures for the safe operation of complex and large-scale artifacts such as nuclear power plants. Each diagnostic technique has its own advantages and limitations. These facts inspire us not only to enhance the capability of diagnostic techniques but also to integrate the results of diagnostic subsystems in order to obtain more accurate diagnostic results. The article describes the outline of four diagnostic techniques developed for the condition monitoring of the fast breeder reactor "Monju". The techniques are (1) estimation technique of important state variables based on a physical model of the component, (2) a state identification technique by non-linear discrimination function applying SVM (Support Vector Machine), (3) a diagnostic technique applying WT (Wavelet Transformation) to detect changes in the characteristics of measurement signals, and (4) a state identification technique effectively using past cases. In addition, a hybrid diagnostic system in which a final diagnostic result is given by integrating the results from subsystems is introduced, where two sets of values called confidence values and trust values are used. A technique to determine the trust value is investigated under the condition that the confidence value is determined by each subsystem.