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1.	 INTRODUCTION

It is very important to efficiently monitor the plant 
condition and to detect and identify small anomalies and 
component failures for the safe operation of complex and 
large-scale artifacts such as nuclear power plants[1]. In 
order to prevent accident situation from happening, the 
concept of defence in depth is widely applied: 1) detec-
tion and identification of an anomaly, 2) prevention of 
the anomaly developing into an accident, and 3) mini-
mization of the damage and influence of an accident. For 
nuclear power plants, the objectives of defence in depth 
are specified “to compensate for potential human and 
component failures, to maintain the effectiveness of the 
barriers by averting damage to the plant and to the bar-
riers themselves and to protect the public and the envi-
ronment from harm in the event that these barriers are 
not fully effective”[2]. Diagnosing the plant condition is 
the first step.

In general, there are several ways of diagnosing the 
plant condition. First, diagnostic tests to classify the 
candidates of anomalies are repeated until an anomaly 
is identified. Second, an assumption for the detected 
anomaly is made and it is confirmed by diagnostic tests. 

Third, a standard set of diagnostic tests is applied and the 
anomaly is diagnosed.

The diagnostic techniques developed up to now can 
be categorized into several categories. The first category 
uses physical models or cause-effect rules of plant com-
ponents based on conservation laws. A simple example is 
to diagnose a leak of a tank by monitoring the flow rates 
of its inlet and outlet. The second category uses pattern 
changes of measurement signals. Patterns of the values 
in plant conditions are usually obtained in advance theo-
retically, experimentally, and/or empirically. If the tem-
perature of a building section is unusually high and its 
humidity is also high, then one can conclude that there 
is a break in the steam piping. Diagnostic techniques 
using discrimination functions are also included in this 
category. An extensive survey for the techniques of con-
dition monitoring using empirical models is given in the 
literature[3]. The third category detects changes in the 
characteristics of measurement signals. The noise analy-
sis[4] of BWR (Boiling Water Reactor) core is included 
in this category.

Each diagnostic technique has its own advantages 
and limitations. This fact inspires us not only to enhance 
the capability of diagnostic techniques but also to inte-
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grate the results of diagnostic subsystems in order to ob-
tain more accurate diagnostic results.

This article introduces several diagnostic tech-
niques[5-9] and an integration technique[10, 11] for 
diagnostic results given by subsystems. The diagnos-
tic and integration techniques were studied in a project 
to develop a hybrid-type diagnostic system for the fast 
breeder reactor “Monju”. The diagnostic techniques that 
were studied are introduced in Sec-tion 2. An integration 
technique of the results given by diagnostic subsystems 
is presented in Section 3. The process signal values of 
“Monju” are calculated by the thermal-hydraulic simula-
tion code NET-FLOW++[12].

2.	 DIAGNOSTIC TECHNIQUES

2.1	Diagnostic technique based on physical model
As an example of a diagnostic technique based on a 

physical model, this subsection describes the outline of a 
diagnostic technique[5, 6] of the superheater of the fast 
breeder reactor “Monju” using observed process signals. 
The technique estimates the overall heat transfer coeffi-
cient that is an important unobserved state variable for 
monitoring the operation condition of the superheater.

A simplified model of the superheater is constructed 
by considering its structure, the flows of secondary so-
dium and water/steam, and the small number of process 
signals available to estimate the overall heat transfer 
coefficient as shown in Fig. 1. Based on the simplified 
model, the equation to calculate the overall heat transfer 
coefficient of the superheater, KSH, is derived as:
where

  	� MW : mass flow rate of steam, 
  	� hW inSH : enthalpy of inlet steam, 
  	� hW outSH : specific enthalpy of outlet steam, 
  	� RSH XSH : total heat transfer area of superheater,
  	� ∆T0SH : temperature difference between liquid sodium 

and steam at the sodium inlet portion, and
  	� ∆TXSH : temperature difference between liquid sodium 

and steam at the sodium outlet portion.
An example to estimate the overall heat transfer co-

efficient is shown in Fig. 2 for the case of a decrease 
of heat transfer rate in the evaporator of “Monju”. The 
anomaly happens at 1000 [s]. The figure also shows the 
time responses of confidence value; a descriptor of the 
certainty of anomaly detection. Owing to the occurrence 
of the anomaly, the overall heat transfer coefficient in the 
superheater increases.

2.2	Diagnostic technique using non-linear discrimination	
	 function

Because the SVM (Support Vector Machine)[13] can 
derive nonlinear identification functions from training 
data, it is applied to construct a state identifier[14] and 
a predictor[15]. The SVM has a learning function to up-
date the identification functions when new training data 
are obtained. The applicability of the SVM to identify 
a small anomaly of “Monju” is investigated[7] with the 
development of a technique to select a suitable set of pro-
cess signals that an SVM identifier uses.

Table 1 shows a comparison of the detection perfor-
mance of SVM and a classical threshold technique to de-
tect a small change of the operating condition of “Monju” 
by a partial insertion of a fine tuning control rod between 
using the threshold value of 2σ (σ: standard deviation 

(1)
Fig. 2. Estimation Results of Overall Heat Transfer Coefficient.

Fig. 1. Simplified Model of Superheater.
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where a MW designed from a characteristic wave includ-
ed in a real signal at an anomaly is used. To design a MW 
from a real signal, the technique applies a parasitic dis-
crete wavelet transform (P-DWT) [18, 19] that can flex-
ibly design a MW and realize a high processing speed.

As an example of detecting a small anomaly, the col-
lision of a spherical plastic particle (diameter: 3.2 [mm]) 
with a part inside a small industrial pump (maximum flow 
rate: 19 [L/min]) is successfully detected as shown in Fig. 
3. Although the collision of the particle with the pump 
is hardly observed by the measured vibration signal, the 
technique detects it at around 3.1 [s] as seen from the 
large value of fast wavelet instantaneous correlation (F-
WIC)[19].

In the application of the WT, several standard MWs 
such as Morlet’s wavelet are often utilized. In order to 
confirm that using MW based on a real signal increas-
es detection performance, a parasitic filter is also con-
structed from Morlet’s wavelet using the same procedure 
as the one using the real signals. Although the parasitic 
filter from Morlet’s wavelet can detect the collision, the 
maximum value of F-WIC is 0.03 and is smaller than that 
(0.04) of the parasitic filter from a real signal. 

2.4	Diagnostic technique based on multi-attribute 	
	 similarity

The performance of diagnosis will increase by using 
multiple attributes of measurement signals because the 
influenced attribute changes depending on the anomaly 
happened. A diagnostic technique based on multiple at-
tributes has been developed [9]. The technique applies 
case-based reasoning (CBR)[20] inspired by the strate-
gies that plant personnel actually applied in real world 
situations. The characteristic feature of the technique is 

of noise). Cases A and B use a different set of 3 signals, 
which were chosen based on which give the best diag-
nostic performance in each case. One of the 3 signals that 
give the highest diagnostic performance is used in the 
threshold technique. As seen from the table, the SVMs 
give high correct identification rates.

2.3 Diagnostic technique based on the characteristic 	
	 change of measurement signals

The WT (Wavelet Transformation)[16] has a strong 
capability to detect the inclusion in a changing signal 
of a wave (short-term change pattern) similar to a refer-
ence wave called a mother wavelet (MW). The WT can 
analyze time-changing data in both frequency and time 
domains. Because of the characteristic features, the WT 
is widely applied to detect sudden anomalies of compo-
nents with rotating parts such as pumps, motors, and so 
on[17]. In principle, the detection performance will in-
crease if a MW is similar to the wave to be detected.

An anomaly detection technique[8] is developed, 

Case Diagnostic technique True condition
Rates of identified condition [%]

1 2

A

SVM
1 96.6 3.4

2 0.4 99.6

Threshold technique
1 96.1 3.9

2 11.8 88,2

B

SVM
1 95.1 4.9

2 0.2 99.8

Threshold technique
1 94.3 5.7

2 61.5 38.5

Table 1. �Comparison of Identification Rates of Plant Condition

Fig. 3. Detection of Collision of a Spherical Particle.
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calculated for the attributes of low and high frequency 
bands in the frequency domain and the attributes in the 
time domain.

As an example of diagnostic results, Fig. 5 shows 
the trend graphs of similarity indices to normal operat-
ing condition. The EDS for similarity evaluation is cal-

to use multiple attributes of process signals for similarity 
evaluation to retrieve a similar case stored in a case base.

The structure of the diagnostic technique is shown 
in Fig. 4. The reference data for attributes in the normal 
condition and the conditions after anomalies happen 
are prepared beforehand. The condition of the plant is 
evaluated to be normal, if the attributes of the process 
signals are similar to those in the normal condition. If the 
plant condition is diagnosed to be an anomalous one, the 
anomaly is identified by comparing the attributes of the 
process signals to those of the anomalous cases. If there 
is no similar case, the condition of the plant is diagnosed 
to be in an unanticipated anomalous condition.

The similarity to the reference data is evaluated by 
an exponential distribution-based similarity EDS [21] 
defined as:

where f and g are N-dimensional attribute vectors and 
both n and S are matching parameters to adjust the sever-
ity of matching. As seen from Eq. (2), EDS approaches 
1.0 if the similarity between f and g becomes high. On the 
other hand, EDS approaches 0.0 if the similarity between   
f and g becomes low.

The attributes in both frequency and time domains are 
used. Considering the sampling time of process data of 
“Monju”, the spectra in low frequency between 0.001 and 
0.01 [Hz], and high frequency between 0.01 and 0.5 [Hz] 
are utilized in the frequency domain. On the other hand, 
pertinent descriptors such as average, covariance, skew-
ness, and kurtosis are utilized as attributes in the time do-
main. In each process signal, three similarity indices are 

(2)

Fig. 5. Examples of Changes of Similarity Indices.

Fig. 4. Structure of Case-Based Reasoning Diagnosis System.
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5 )  �easy localization of system trouble because of 
high transparency and modularity of subsystem 
functions.

3.2	Problems in integrating diagnostic results by 	
	 subsystems

A critical issue in the development and application of 
a hybrid diagnostic system is how to integrate the diag-
nostic results from subsystems. Usually, the diagnostic 
performance of a subsystem depends on the following 
features. First, the applicable range of each subsystem 
is restricted due to its diagnosis principle, measurement 
signals used, noise in measurement signals, and so on. 
Second, the anomalies that can be diagnosed by a sub-
system and the accuracy of its diagnostic results depend 
not only on its diagnostic principle but also on the setting 
of thresholds for diagnosis because they are usually de-
termined by solving the trade-off of erroneous alarm and 
missed alarm. Moreover, it is usually hard for the integra-
tion system to know how much a diagnostic parameter 
of a subsystem exceeds the thresholds used in diagnosis 
because the information is local to a particular subsystem.

The handling of the information of subsystems is dif-
ficult for the integration system due to the variety of diag-
nostic principles, measurement signals, and structures of 
subsystems. However, in the integration of the diagnostic 
results of subsystems, these topics should be addressed 
because they influence the accuracy of integrated diag-
nostic results.

4.	 AN INTEGRATION TECHNIQUE OF DIAGNOSTIC 	
	 RESULTS BY SUBSYSTEMS

4.1	Integration framework of diagnostic results
By considering the topics to be addressed in the in-

tegration of diagnostic results of subsystems by an inte-
gration system, the integration technique[9, 10] shown in 

culated every 1 [s] for the time window of 1000 [s]. The 
anomaly is a small decrease of feedwater temperature. 
The anomaly occurs at 10000 [s]. As seen from the figure, 
the similarity indices for the attributes in the time domain, 
the attributes of low and high frequency bands in the fre-
quency domain gradually increase from 0.0 to 1.0 after 
the anomaly happens. The technique is also confirmed 
to detect other anomalies a short time after they happen.

3.	 A HYBRID DIAGNOSTIC SYSTEM

3.1	General configuration and advantages
A hybrid diagnostic system[22] in which a final deci-

sion is given by integrating the results of subsystems is 
one of the promising ways to develop a diagnostic sys-
tem because the applicable range of the system can be 
wide compared with that of a single system. 

A hybrid diagnostic system is generally composed 
of an integration system and diagnostic subsystems as 
shown in Fig. 6. Each diagnostic subsystem diagnoses 
the plant condition from measurement signals, such as 
process signals of the plant, based on their own diagnos-
tic principles. The diagnostic results are sent to the inte-
gration system and are integrated to obtain a diagnostic 
result on plant condition. The integration agent may store 
trend data of observed signals and serve them to the sub-
systems.

The advantages of the hybrid system are:
1 )  �easy realization of fault tolerance by duplex sys-

tems,
2 )  �easy maintenance because of small program size 

of a subsystem compared with a total system im-
plementing many functions,

3 ) �easy upgrade of the function by adding or replac-
ing subsystems that are required,

4 )  �high reusability of a subsystem based on the 
modularity of the subsystem, and

Fig. 6. General Configuration of a Hybrid-Type Diagnostic System.
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where Ej, Ckij, and Tkj are the evaluation value for identi-
fied condition j, the confidence value of subsystem k for 
plant condition i and identified condition j, and the trust 
value for the diagnostic result of subsystem k for identi-
fied condition j, respectively. The integrated diagnostic 
result is given to be a plant condition j that the evaluation 
value Ej is the highest.

Although the integration system does not know how 
a subsystem determines the confidence value, it will be 
reasonable that the integration system determines the 
trust value of a subsystem by its past diagnostic perfor-
mance if its confidence value is supposed to be given in 
an unchangeable way. From this consideration, the trust 
value Tkj is calculated by:

where CkijT and CkijF are the confidence value of subsys-
tem k at diagnosis round T giving the correct diagnos-
tic result for plant condition i and identified condition j, 
and the confidence value at diagnosis round F giving the 
wrong diagnostic result.

The trust value defined by Eq. (4) means the ratio be-
tween the total confidence value of past diagnoses giving 
correct results by a subsystem and the total confidence 
value of its past diagnoses. In an online system applica-
tion, the trust value is easy to update by keeping the val-
ues of the summations of CkijT and CkijF.

4.2	Applicability evaluation
4.2.1	 Purpose and conditions of applicability evaluation

The applicability of the technique of trust value deter-
mination is examined by several case studies. The con-

Fig. 7 is proposed and applied to study a hybrid diagnos-
tic system for the fast breeder reactor “Monju”.

In this technique, each subsystem outputs its diagnos-
tic result and a confidence value that is a descriptor of 
the certainty of the result. The confidence value is given 
between 0.0 and 1.0. Confidence values of 1.0 and 0.0 
mean that the subsystem has absolute confidence and no 
confidence, respectively.

On the other hand, the integration system (hybrid di-
agnostic system) uses trust values that are descriptors of 
trust in the results of subsystems by the integration sys-
tem. The trust value is given between 0.0 and 1.0. Trust 
values of 1.0 and 0.0 mean that the integration agent 
absolutely trusts the result and ignores the result of the 
corresponding subsystem, respectively. The integration 
system obtains an integrated diagnostic result by using 
the diagnostic results and confidence values given by 
subsystems and its own trust values.

It will be better to leave the determination of the con-
fidence value to each subsystem because there are many 
kinds of diagnostic techniques and it is difficult for the 
integration system to grasp the characteristic features of 
subsystems. Instead, it is reasonable to focus on the de-
velopment of a technique for determining the trust values.

When a subsystem is supposed to output its diagnos-
tic result as a category of plant condition such as state 1, 
state 2, and so on, with a confidence value, the trust value 
is predetermined for each category of plant condition that 
a subsystem identifies.

To integrate the diagnostic results given by subsys-
tems, an evaluation value is defined as:

(3)

(4)

Fig. 7. Hybrid Diagnostic System for “Monju”.
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Subsystem Plant
condition

 Identification probability [%]  Confidence value for
plant condition

1 2 3 4

A1

1 98 1 1 0 CH
2 2 95 2 1 CH
3 1 1 97 1 CH
4 1 1 3 95 CH

A2

1 98 1 1 0 CL
2 2 95 2 1 CL
3 1 1 97 1 CL
4 1 1 3 95 CL

A3

1 98 1 1 0 CH
2 2 95 2 1 CL
3 1 1 97 1 CH
4 1 1 3 95 CL

A4

1 60 20 10 10 CH
2 30 50 10 10 CH
3 20 20 55 5 CH
4 30 10 10 50 CH

A5

1 60 20 10 10 CL
2 30 50 10 10 CL
3 20 20 55 5 CL
4 30 10 10 50 CL

A6

1 60 20 10 10 CH
2 30 50 10 10 CL
3 20 20 55 5 CH
4 30 10 10 50 CL

A7

1 98 1 1 0 CH
2 20 55 20 5 CH
3 2 2 95 1 CH
4 30 10 10 50 CH

A8

1 98 1 1 0 CL
2 20 55 20 5 CL
3 2 2 95 1 CL
4 30 10 10 50 CL

A9

1 98 1 1 0 CH
2 20 55 20 5 CL
3 2 2 95 1 CH
4 30 10 10 50 CL

A10

1 98 1 1 0 CL
2 20 55 20 5 CH
3 2 2 95 1 CL
4 30 10 10 50 CH

Table 2. �Diagnostic Performance of Subsystems
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As seen from Table 3, the trust values for subsystem 
A1 are the same as the probabilities of correct identifica-
tion for plant conditions. This is obvious from Eq. (6) be-
cause the confidence value is the same independent of the 
identified plant condition. The trust values of subsystem 
A9 are higher than the probabilities of correct identifica-
tion except for plant conditions 2 and 4. This is because 
subsystem A9 gives low diagnostic performance and low 
confidence values for plant conditions 2 and 4. The theo-
retical values of trust values for the random process case 
suggest the adequacy of the determination of trust values 
by this technique. 

4.2.3 Comparison with other integration techniques
The diagnostic performances by the proposed tech-

nique are compared with other integration techniques by 
changing the confidence values (CH and CL). The con-
fidence value CH is set to be 0.80 or 0.90. On the other 
hand, the confidence value CL is changed from 0.30 to 
0.60 by steps of 0.10. It is assumed that there are four 
subsystems in a hybrid diagnostic system. The diagnostic 
performance of a subsystem is selected to be one from A1 
to A10 in Table 2.

Two types of straightforward integration techniques 
are considered. The first one is the decision by majority. 
This technique is often used for decision making in hu-
man society. The other is to give an integrated diagnostic 
result by considering only confidence values of subsys-
tems. This case corresponds to the one where all trust 
values in Eq. (4) are set to 1.0.

Examples of comparison results are shown in Tables 
4 to 6. In Tables 4 and 6, the combination of subsystems 
is shown as “[na,nb,nc,nd]”, where na,nb,nc,and nd are iden-
tification numbers of subsystems.

Table 4 summarizes the best five combination pat-
terns in the case of CH=0.90. In the table, the value in 
the second line of each cell is the correct identification 
probability by the integration technique. The table shows 
that the correct identification probability is slightly high-
er than that of the technique using only confidence values. 
Although the best correct identification probability of de-
cision by majority is highest in the case of CL=0.30, the 
probability drops when descending the order.

Table 5 shows the total number of combination cases 
of subsystems that give better diagnostic results by the 
proposed technique than the compared integration tech-
nique at the confidence value CH of 0.90. There are 715 
combination cases of four subsystems because combina-
tion cases containing the same subsystems are permitted. 
As seen from the table, the proposed technique tends to 
give better integration results than the straightforward in-
tegration techniques according to the increase of the con-
fidence value CL for plant conditions. It is interesting that 
the decision by majority gives slightly better integration 
results than the proposed technique at a low CL.

In order to confirm the tendency of combination pat-

ditions of all case studies are as follows. Diagnoses by 
subsystems are assumed to be random processes under 
predefined probabilities and the plant condition is also 
given as random. Four plant conditions and ten subsys-
tems are considered. The occurrence probability of each 
condition is assumed to be 0.6 (Condition 1), 0.2 (Con-
dition 2), 0.1 (Condition 3), and 0.1 (Condition 4). The 
diagnostic performances of the subsystems are given as 
shown in Table 2, where two confidence values of high 
(CH) or low (CL) for identified conditions are used.

The subsystems A1 to A3 exhibit high diagnostic 
performances. On the other hand, the diagnostic accura-
cies of subsystems A4 to A6 are low. The subsystems A7 
to A10 exhibit high or low diagnostic performances de-
pending on the current plant condition.

4.2.2	 Relations between diagnostic characteristics 	
		  of subsystems and determined trust values

The diagnostic characteristics of subsystems are 
specified by the probabilities of correct identification and 
confidence values. The first evaluation investigates the 
relations between diagnostic characteristics of a subsys-
tem and determined trust values by the proposed tech-
nique.

In a random process, the theoretical probability of 
correct identification Pkj of subsystem k for identified 
condition j is given by:

where Hi and Ikij are the happening probability of plant 
condition i and the identification probability of subsys-
tem k as identified condition j when the plant condition is 
i, respectively. On the other hand, the theoretical values 
of trust values Tkj are given by:

where    kjj and    kij are averages of the confidence values 
Ckjj and Ckij, respectively when the confidence values of 
a subsystem change depending on diagnosis rounds and 
the probability density functions to determine the confi-
dence values are symmetrical around their averages.

As an example of calculated theoretical values, Table 
3 shows the correct identification probabilities and trust 
values for subsystem A1 and A9. In the calculation, the 
confidence value CH is set to be 0.80 and CL is set to be 
0.20.

(5)

(6)
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Subsystem Identified
condition

 Probability of correct
 identification [%] Trust value

A1

1 99.0 0.990

2 96.0 0.960

3 88.2 0.882

4 96.9 0.969

A9

1 89.1 0.968

2 85.9 0.724

3 62.9 0.837

4 82.0 0.781

Table 3. �Theoretical Trust Values of Subsystem in the First Simulation

CL Order from 
best case

Integration technique

Proposed technique Decision by majority Considering only 
confidence value

0.30

1 [A1, A2, A3, A10]
0.992

[A1, A2, A3, A7]
0.995

[A1, A2, A3, A7]
0.990

2 [A1, A2, A3, A7]
0.992

[A1, A2, A3, A4]
0.992

[A1, A2, A3, A10]
0.990

3 [A2, A3, A8, A9]
0.991

[A1, A2, A7, A8]
0.978

[A1, A2, A3, A4]
0.985

4 [A1, A3, A8, A10]
0.990

[A1, A2, A4, A7]
0.974

[A1, A2, A3, A9]
0.985

5 [A1, A2, A9, A10]
0.990

[A1, A2, A4, A5]
0.947

[A1, A3, A8, A9]
0.984

0.60

1 [A1, A2, A3, A7]
0.996

[A1, A2, A3, A7]
0.995

[A1, A2, A3, A8]
0.996

2 [A1, A2, A3, A8]
0.996

[A1, A2, A3, A4]
0.992

[A1, A2, A3, A9]
0.996

3 [A1, A2, A3, A4]
0.996

[A1, A2, A7, A8]
0.978

[A1, A2, A3, A10]
0.994

4 [A1, A2, A3, A10]
0.996

[A1, A2, A4, A7]
0.974

[A1, A2, A3, A7]
0.994

5 [A1, A2, A3, A9]
0.996

[A1, A2, A4, A5]
0.947

[A1, A2, A3, A5]
0.994

Table 4. �Best Five Combinations of Diagnostic Subsystems Giving High Performances by an Integration Technique without 
Permitting the Combination of Same Diagnostic Subsystems
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Comparison case Integration technique
CL (Lower confidence values for plant conditions) 

0.30 0.40 0.50 0.60

1
Proposed technique 329 381 471 544

Decision by majority 386 334 244 171

2
Proposed technique 611 600 577 621

Considering only confidence value 104 115 138 94

Table 5. �Comparison Results of Diagnostic Performances Among Three Integration Techniques by Changing Lower Confidence 
Values for Plant Conditions with Permitting the Combination of Same Diagnostic Subsystems

Comparison case Order from 
worst case

CL (Lower confidence values for plant conditions) 

0.30 0.40 0.50 0.60

1 (Proposed technique 
and decision by majority)

1 [A2, A3, A6, A7]
0.884, 0.973

[A3, A6, A6, A7]
0.853, 0.908

[A6, A6, A6, A8]
0.765, 0.797

[A6, A6, A6, A10]
0.765, 0.797

2 [A2, A3, A5, A7]
0.884, 0.973

[A2, A6, A7, A9]
0.886, 0.936

[A3, A6, A6, A7]
0.882, 0.908

[A4, A6, A9, A9]
0.846, 0.862

3 [A2, A2, A6, A10]
0.884, 0.973

[A3, A6, A7, A9]
0.886, 0.936

[A2, A6, A6, A7]
0.882, 0.908

[A4, A4, A4, A10]
0.781, 0.797

4 [A3, A3, A6, A7]
0.885, 0.973

[A2, A5, A6, A7]
0.860, 0.908

[A6, A6, A7, A9]
0.841, 0.862

[A6, A7, A7, A9]
0.875, 0.890

5 [A3, A3, A5, A7]
0.885, 0.973

[A2, A5, A5, A7]
0.861, 0.908

[A4, A6, A8, A8]
0.843, 0.862

[A6, A8, A8, A9]
0.877, 0.890

2 (Proposed technique 
and technique only 

considering confidence 
value)

1 [A5, A5, A5, A9]
0.825, 0.871

[A5, A5, A5, A9]
0.839, 0.867

[A5, A6, A7, A9]
0.856, 0.886

[A5, A6, A7, A9]
0.861, 0.886

2 [A5, A6, A6, A6]
0.676, 0.711

[A5, A6, A9, A9]
0.857, 0.883

[A3, A5, A6, A7]
0.898, 0.925

[A5, A5, A7, A9]
0.862, 0.886

3 [A5, A6, A9, A9]
0.852, 0.883

[A2, A5, A5, A7]
0.861, 0.881

[A4, A5, A9, A9]
0.858, 0.883

[A5, A5, A7, A8]
0.867, 0.886

4 [A6, A9, A9, A9]
0.859, 0.890

[A3, A5, A5, A7]
0.865, 0.885

[A6, A6, A7, A9]
0.841, 0.864

[A5, A5, A9, A10]
0.869, 0.886

5 [A3, A4, A5, A7]
0.875, 0.903

[A3, A5, A6, A7]
0.865, 0.885

[A2, A5, A5, A7]
0.904, 0.924

[A4, A5, A7, A7]
0.868, 0.886

Table 6. �Worst Five Combinations of Diagnostic Subsystems Giving Lower Performances by the Proposed Technique with 
Permitting the Combination of Same Diagnostic Subsystems
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diagnostic cases rather than random process cases. Ap-
plicability evaluation of the developed hybrid diagnostic 
system through the condition monitoring of “Monju” is 
also a future topic. Because engineering plants have sim-
ilar components to “Monju”, it will be easy to apply the 
developed diagnostic techniques to an engineering plant 
with some minor modifications.
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