• 제목/요약/키워드: Vector Machines

검색결과 538건 처리시간 0.029초

A New Directional Coupler Type Partial Discharge Sensor Installed on the Power Lead of Rotating Machine

  • Yi, Sang-Hwa;Hwang, Don-Ha;Park, Wee Sang
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1769-1776
    • /
    • 2016
  • For on-line partial discharge (PD) monitoring of rotating machines, a novel sensor is proposed, which can be installed on the power lead inside the terminal box of the machine. The sensor has been designed to have high capacitance, and minimal reflection of measured pulses. As a sensitivity of the sensor, transfer impedance $Z_t$ has been measured and compared to conventional coupler-type sensors. A simple method is presented for measuring $Z_t$ of coupler sensors, using a vector network analyzer and a practical lead-cable of rotating machine. Through this method, it became possible to measure the $Z_t$ of coupler sensors including the installation environment of them. The $Z_t$ of the proposed sensor is higher than that of same sized other conventional couplers at frequencies between 30 and 92 MHz. Another sensitivity test has been performed using a PD calibrator as a test pulse source. The proposed sensor has higher measured peak voltage than the conventional coupler type sensors when the same charges were input.

혼합 시퀀스 커널을 이용한 조종사의 비동적 행위 모델링 (A Non-Kinetic Behavior Modeling for Pilots Using a Hybrid Sequence Kernel)

  • 최예림;전승욱;지철규;박종헌;신동민
    • 한국군사과학기술학회지
    • /
    • 제17권6호
    • /
    • pp.773-785
    • /
    • 2014
  • For decades, modeling of pilots has been intensively studied due to its advantages in reducing costs for training and enhancing safety of pilots. In particular, research for modeling of pilots' non-kinetic behaviors which refer to the decisions made by pilots is beneficial as the expertise of pilots can be inherent in the models. With the recent growth in the amount of combat logs accumulated, employing statistical learning methods for the modeling becomes possible. However, the combat logs consist of heterogeneous data that are not only continuous or discrete but also sequence independent or dependent, making it difficult to directly applying the learning methods without modifications. Therefore, in this paper, we present a kernel function named hybrid sequence kernel which addresses the problem by using multiple kernel learning methods. Based on the empirical experiments by using combat logs obtained from a simulator, the proposed kernel showed satisfactory results.

문서측 자질선정을 이용한 고속 문서분류기의 성능향상에 관한 연구 (Improving the Performance of a Fast Text Classifier with Document-side Feature Selection)

  • 이재윤
    • 정보관리연구
    • /
    • 제36권4호
    • /
    • pp.51-69
    • /
    • 2005
  • 문서분류에 있어서 분류속도의 향상이 중요한 연구과제가 되고 있다. 최근 개발된 자질값투표 기법은 문서자동분류 문제에 대해서 매우 빠른 속도를 가졌지만, 분류정확도는 만족스럽지 못하다. 이 논문에서는 새로운 자질선정 기법인 문서측 자질선정 기법을 제안하고, 이를 자질값투표 기법에 적용해 보았다. 문서측 자질선정은 일반적인 분류자질선정과 달리 학습집단이 아닌 분류대상 문서의 자질 중 일부만을 선택하여 분류에 이용하는 방식이다. 문서측 자질선정을 적용한 실험에서는, 간단하고 빠른 자질값투표 분류기로 SVM 분류기만큼 좋은 성능을 얻을 수 있었다.

과절삭을 고려한 E-ICAM의 정밀도 개선에 관한 연구 (Study on the Accuracy Improvement of E-ICAM in Consideration of Gouging)

  • 손황진;조영태;정윤교
    • 한국정밀공학회지
    • /
    • 제32권8호
    • /
    • pp.705-711
    • /
    • 2015
  • Five-Axis machines can generate undesirable defects such as the undercutting and overcutting errors that frequently occur in the three-axis machining process. It is therefore necessary to develop a program for NC-code generation, whereby the cutter posture is considered to decrease the occurrence of defects. In previous studies, the Easy-Impeller CAM(E-ICAM), an automatic CAM program used for the five-axis machining of impellers, was developed; however, when E-ICAM is used to machine an impeller, it is possible to gouge the hub and blade. Therefore, the aim of this study is the establishment of a formula for each type of endmill to minimize gouging according to the cutter posture, in consideration of several factors that affect accuracy in the machining of an impeller. This study also aimed to improve the performance and accuracy of E-ICAM in the manufacturing of impellers.

슬립각속도를 사용하는 회전자 저항 보정에 의한 유도전동기의 센서리스 속도제어 개선 (Improved Sensorless Control of Induction motor by Rotor Resistance Compensation)

  • 박강효;권영안
    • 한국정보통신학회논문지
    • /
    • 제15권4호
    • /
    • pp.886-890
    • /
    • 2011
  • 유도전동기는 상대적으로 저가이며 보수가 용이하여 산업 및 여러 분야에서 많이 사용되고 있는 전동기이다. 유도전동기의 정확한 속도 및 토크 제어를 위해서 회전자의 속도 및 위치정보가 요구된다. 회전자의 위치 및 속도 센서들은 경제성 및 주위 환경에 따른 센서의 신뢰도 감소 문제를 가져온다. 최근에는 이러한 경제성 및 신뢰성 향상을 위하여 속도 및 위치센서를 사용하지 않는 센서리스 제어방식의 연구가 많이 이루어지고 있다. 대부분의 센서리스제어 방식에서 위치 및 속도추정은 전동기 전압방정식으로부터 계산된다. 따라서 파라미터 오차는 센서리스 제어성능에 큰 영향을 미치게 된다. 본 논문에서는 유도전동기의 속도 추정에서 회전자 저항 오차에 의해 발생하는 속도 오차를 보상하기 위하여 회전자 저항 보상방식을 제안한다. 본 논문에서 제안한 방식은 컴퓨터 시뮬레이션 및 실험을 통하여 검증한다.

A Novel Character Segmentation Method for Text Images Captured by Cameras

  • Lue, Hsin-Te;Wen, Ming-Gang;Cheng, Hsu-Yung;Fan, Kuo-Chin;Lin, Chih-Wei;Yu, Chih-Chang
    • ETRI Journal
    • /
    • 제32권5호
    • /
    • pp.729-739
    • /
    • 2010
  • Due to the rapid development of mobile devices equipped with cameras, instant translation of any text seen in any context is possible. Mobile devices can serve as a translation tool by recognizing the texts presented in the captured scenes. Images captured by cameras will embed more external or unwanted effects which need not to be considered in traditional optical character recognition (OCR). In this paper, we segment a text image captured by mobile devices into individual single characters to facilitate OCR kernel processing. Before proceeding with character segmentation, text detection and text line construction need to be performed in advance. A novel character segmentation method which integrates touched character filters is employed on text images captured by cameras. In addition, periphery features are extracted from the segmented images of touched characters and fed as inputs to support vector machines to calculate the confident values. In our experiment, the accuracy rate of the proposed character segmentation system is 94.90%, which demonstrates the effectiveness of the proposed method.

다중 클래스 SVMs를 이용한 얼굴 인식의 성능 개선 (The Performance Improvement of Face Recognition Using Multi-Class SVMs)

  • 박성욱;박종욱
    • 대한전자공학회논문지SP
    • /
    • 제41권6호
    • /
    • pp.43-49
    • /
    • 2004
  • 기존의 다중 클래스 SVMs은 클래스의 개수가 증가되면, 이진 클래스 SVMs의 수도 증가되어 분류를 위해 많은 시간이 요구된다. 본 논문에서는 분류 시간을 줄이기 위하여, PCA+LDA 특징 부 공간에서 NNR을 적용하여 클래스의 개수를 줄이는 방법을 제안한다. 제안된 방법은 PCA+LDA 특징 부 공간에서 간단한 NNR을 사용하여, 입력된 테스트 특징 데이터와 근접된 얼굴 클래스들을 추출함으로서 얼굴 클래스의 개수를 줄이는 방법이다. 클래스 개수를 줄임으로, 본 방법은 기존의 다중 클래스 SVMs에 비하여 훈련 횟수와 비교 횟수를 줄일 수 있고, 결과적으로 하나의 테스트 영상을 위한 분류 시간을 크게 줄일 수 있다. 또한 실험 결과, 제안된 방법은 NNC 기법보다 낮은 에러 율을 가지며, 기존의 다중 클래스 SVMs보다 동일한 에러 율을 갖지만, 보다 빠른 분류시간을 가짐을 확인할 수 있었다.

고차원 데이터 처리를 위한 SVM기반의 클러스터링 기법 (SVM based Clustering Technique for Processing High Dimensional Data)

  • 김만선;이상용
    • 한국지능시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.816-820
    • /
    • 2004
  • 클러스터링은 데이터 집합을 유사한 데이터 개체들의 클러스터들로 분할하여 데이터 속에 존재하는 의미 있는 정보를 얻는 과정이다. 클러스터링의 주요 쟁점은 고차원 데이터를 효율적으로 클러스터링하는 것과 최적화 문제를 해결하는 것이다. 본 논문에서는 SVM(Support Vector Machines)기반의 새로운 유사도 측정법과 효율적으로 클러스터의 개수를 생성하는 방법을 제안한다. 고차원의 데이터는 커널 함수를 이용해 Feature Space로 매핑시킨 후 이웃하는 클러스터와의 유사도를 측정한다. 이미 생성된 클러스터들은 측정된 유사도 값과 Δd 임계값에 의해서 원하는 클러스터의 개수를 얻을 수 있다. 제안된 방법을 검증하기 위하여 6개의 UCI Machine Learning Repository의 데이터를 사용한 결과, 제시된 클러스터의 개수와 기존의 연구와 비교하여 향상된 응집도를 얻을 수 있었다.

Stress Detection and Classification of Laying Hens by Sound Analysis

  • Lee, Jonguk;Noh, Byeongjoon;Jang, Suin;Park, Daihee;Chung, Yongwha;Chang, Hong-Hee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권4호
    • /
    • pp.592-598
    • /
    • 2015
  • Stress adversely affects the wellbeing of commercial chickens, and comes with an economic cost to the industry that cannot be ignored. In this paper, we first develop an inexpensive and non-invasive, automatic online-monitoring prototype that uses sound data to notify producers of a stressful situation in a commercial poultry facility. The proposed system is structured hierarchically with three binary-classifier support vector machines. First, it selects an optimal acoustic feature subset from the sound emitted by the laying hens. The detection and classification module detects the stress from changes in the sound and classifies it into subsidiary sound types, such as physical stress from changes in temperature, and mental stress from fear. Finally, an experimental evaluation was performed using real sound data from an audio-surveillance system. The accuracy in detecting stress approached 96.2%, and the classification model was validated, confirming that the average classification accuracy was 96.7%, and that its recall and precision measures were satisfactory.

A Method of Analyzing ECG to Diagnose Heart Abnormality utilizing SVM and DWT

  • Shdefat, Ahmed;Joo, Moonil;Kim, Heecheol
    • Journal of Multimedia Information System
    • /
    • 제3권2호
    • /
    • pp.35-42
    • /
    • 2016
  • Electrocardiogram (ECG) signal gives a clear indication whether the heart is at a healthy status or not as the early notification of a cardiac problem in the heart could save the patient's life. Several methods were launched to clarify how to diagnose the abnormality over the ECG signal waves. However, some of them face the problem of lack of accuracy at diagnosis phase of their work. In this research, we present an accurate and successive method for the diagnosis of abnormality through Discrete Wavelet Transform (DWT), QRS complex detection and Support Vector Machines (SVM) classification with overall accuracy rate 95.26%. DWT Refers to sampling any kind of discrete wavelet transform, while SVM is known as a model with related learning algorithm, which is based on supervised learning that perform regression analysis and classification over the data sample. We have tested the ECG signals for 10 patients from different file formats collected from PhysioNet database to observe accuracy level for each patient who needs ECG data to be processed. The results will be presented, in terms of accuracy that ranged from 92.1% to 97.6% and diagnosis status that is classified as either normal or abnormal factors.