• Title/Summary/Keyword: Vector Fit

Search Result 65, Processing Time 0.022 seconds

Prediction of the Radiated Emission(RE)s due to the PCB Power-Bus' Resonance Modes and Mitigation of the RE Levels

  • Kahng, Sung-Tek
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.1
    • /
    • pp.7-11
    • /
    • 2007
  • PCB Power-Bus (comprising power/ground planes) impedance and fields are evaluated by an efficient series expansion method that is suggested in this paper. It is used to investigate the structure's radiated emission(RE) levels and find acceptable ways of loading the power/ground planes such as decoupling capcitor(DeCap)s, balanced feeding and slits, in order to reduce the interferences. Also, the calculations and measurements of a proposed geometry are verified by vector fitting as a analysis model to check the behavior of the slit.

Switching Regression Analysis via Fuzzy LS-SVM

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.609-617
    • /
    • 2006
  • A new fuzzy c-regression algorithm for switching regression analysis is presented, which combines fuzzy c-means clustering and least squares support vector machine. This algorithm can detect outliers in switching regression models while yielding the simultaneous estimates of the associated parameters together with a fuzzy c-partitions of data. It can be employed for the model-free nonlinear regression which does not assume the underlying form of the regression function. We illustrate the new approach with some numerical examples that show how it can be used to fit switching regression models to almost all types of mixed data.

  • PDF

A Study on the Thermal Stress Analysis of Axi-Symmetric Hollow Cylinder (축대칭 중공실린더의 길이방향 온도분포하의 열탄성응력 해석에 관한 연구)

  • Lee, Sang-Jin;Cho, Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3152-3159
    • /
    • 1996
  • Previous works about the cylindrical shape elastic body which is under longitudinal temperature distribution mostly show the results of free expansion, therefore exact thermo-elastic analysis is needed. The object of this work is to analyze the thermo-elastic problem of the hollow cylinder when the cylinder is under longitudinal temperature distribution. In this paper, the analytical solution is found by using Galerkin vector, and it is compared by the results of FEM. For displacements of cylinder, analytical values are almost same as the results of FEM, but free expansion is not fit for analytical solution and the results of FEM. stresses from analytical solution and the results of FEM show good agreement also. but the results are different near the end boundary, since St. Venant principle is applied.

Hull Form Representation using a Hybrid Curve Approximation (혼합 곡선 근사법을 이용한 선형 표현)

  • Hyun-Cheol Kim;Kyung-Sun Lee;Soo-Young Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.118-125
    • /
    • 1998
  • This paper presents the hybrid curve approximation with geometric boundary conditions as position vector and tangent vector of start and end point using a B-spline approximation and a genetic algorithm First, H-spline approximation generates control points to fit B-spline curries through specified data points. Second, these control points are modified by genetic algorithm(with floating point representation) under geometric boundary conditions. This method would be able to execute the efficient design work without fairing.

  • PDF

DEFECT INSPECTION IN SEMICONDUCTOR IMAGES USING HISTOGRAM FITTING AND NEURAL NETWORKS

  • JINKYU, YU;SONGHEE, HAN;CHANG-OCK, LEE
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.4
    • /
    • pp.263-279
    • /
    • 2022
  • This paper presents an automatic inspection of defects in semiconductor images. We devise a statistical method to find defects on homogeneous background from the observation that it has a log-normal distribution. If computer aided design (CAD) data is available, we use it to construct a signed distance function (SDF) and change the pixel values so that the average of pixel values along the level curve of the SDF is zero, so that the image has a homogeneous background. In the absence of CAD data, we devise a hybrid method consisting of a model-based algorithm and two neural networks. The model-based algorithm uses the first right singular vector to determine whether the image has a linear or complex structure. For an image with a linear structure, we remove the structure using the rank 1 approximation so that it has a homogeneous background. An image with a complex structure is inspected by two neural networks. We provide results of numerical experiments for the proposed methods.

Multivariate exponential smoothing models with application to exchange rates (다변량 지수평활모형을 이용한 환율 분석)

  • Lee, Yeonha;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.3
    • /
    • pp.257-267
    • /
    • 2020
  • We introduce multivariate exponential smoothing models based on a vector innovations structural time series framework. The models enable us to exploit potential inter-series dependencies to improve the fit and forecasts of multivariate (vector) time series. Models are applied to forecast the exchange rates of the UK pound (UKP) and US dollar (USD) against the Korean won (KRW) observed on monthly basis; subseqently, we compare their performance with alternative models. We observe that the multivariate exponential smoothing models are superior to alternatives.

Simple factor analysis of measured data

  • Kozar, Ivica;Kozar, Danila Lozzi;Malic, Neira Toric
    • Coupled systems mechanics
    • /
    • v.11 no.1
    • /
    • pp.33-41
    • /
    • 2022
  • Quite often we have a lot of measurement data and would like to find some relation between them. One common task is to see whether some measured data or a curve of known shape fit into the cumulative measured data. The problem can be visualized since data could generally be presented as curves or planes in Cartesian coordinates where each curve could be represented as a vector. In most cases we have measured the cumulative 'curve', we know shapes of other 'curves' and would like to determine unknown coefficients that multiply the known shapes in order to match the measured cumulative 'curve'. This problem could be presented in more complex variants, e.g., a constant could be added, some missing (unknown) data vector could be added to the measured summary vector, and instead of constant factors we could have polynomials, etc. All of them could be solved with slightly extended version of the procedure presented in the sequel. Solution procedure could be devised by reformulating the problem as a measurement problem and applying the generalized inverse of the measurement matrix. Measurement problem often has some errors involved in the measurement data but the least squares method that is comprised in the formulation quite successfully addresses the problem. Numerical examples illustrate the solution procedure.

Estimating Algorithm of Physical Activity Energy Expenditure and Physical Activity Intensity using a Tri-axial Accelerometer (3축 가속도 센서를 이용한 신체활동 에너지 소비량과 신체활동 강도 예측 알고리즘)

  • Kim, D.Y.;Hwang, I.H.;Jeon, S.H.;Bae, Y.H.;Kim, N.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.5 no.1
    • /
    • pp.27-33
    • /
    • 2011
  • Estimating algorithm of physical activity energy expenditure and physical activity intensity was implemented by using a tri-axial accelerometer motion detector of the SVM(Signal Vector Magnitude) of 3-axis(x, y, z). A total of 10 participants(5 males and 5 females aged between 20 and 30 years). The ActiGraph(LLC, USA) and Fitmeter(Fit.life, korea) was positioned anterior superior iliac spine on the body. The activity protocol consisted of three types on treadmill; participants performed three treadmill activity at three speeds(3, 5, 8 km/h). Each activity was performed for 7 minutes with 4 minutes rest between each activity for the steady state. These activities were repeated four weeks. Algorithm for METs, kcal and intensity of activities were implemented with ActiGraph and Fitmeter correlation between the data.

Predictive Analysis of Fire Risk Factors in Gyeonggi-do Using Machine Learning (머신러닝을 이용한 경기도 화재위험요인 예측분석)

  • Seo, Min Song;Castillo Osorio, Ever Enrique;Yoo, Hwan Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.351-361
    • /
    • 2021
  • The seriousness of fire is rising because fire causes enormous damage to property and human life. Therefore, this study aims to predict various risk factors affecting fire by fire type. The predictive analysis of fire factors was carried out targeting Gyeonggi-do, which has the highest number of fires in the country. For the analysis, using machine learning methods SVM (Support Vector Machine), RF (Random Forest), GBRT (Gradient Boosted Regression Tree) the accuracy of each model was presented with a high fit model through MAE (Mean Absolute Error) and RMSE (Root Mean Squared Error), and based on this, predictive analysis of fire factors in Gyeonggi-do was conducted. In addition, using machine learning methods such as SVM (Support Vector Machine), RF (Random Forest), and GBRT (Gradient Boosted Regression Tree), the accuracy of each model was presented with a high-fit model through MAE and RMSE. Predictive analysis of occurrence factors was achieved. Based on this, as a result of comparative analysis of three machine learning methods, the RF method showed a MAE = 1.765 and RMSE = 1.876, as well as the MAE and RMSE verification and test data were very similar with a difference between MAE = 0.046 and RMSE = 0.04 showing the best predictive results. The results of this study are expected to be used as useful data for fire safety management allowing decision makers to identify the sequence of dangers related to the factors affecting the occurrence of fire.

Impulse Response of Inflation to Economic Growth Dynamics: VAR Model Analysis

  • DINH, Doan Van
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.9
    • /
    • pp.219-228
    • /
    • 2020
  • The study investigates the impact of inflation rate on economic growth to find the best-fit model for economic growth in Vietnam. The study applied Vector Autoregressive (VAR), cointegration models, and unit root test for the time-series data from 1996 to 2018 to test the inflation impact on the economic growth in the short and long term. The study showed that the two variables are stationary at lag first difference I(1) with 1%, 5% and 10%; trace test indicates two cointegrating equations at the 0.05 level, the INF does not granger cause GDP, the optimal lag I(1) and the variables are closely related as R2 is 72%. It finds that the VAR model's results are the basis to perform economic growth; besides, the inflation rate is positively related to economic growth. The results support the monetary policy. This study identifies issues for Government to consider: have a comprehensive solution among macroeconomic policies, monetary policy, fiscal policy and other policies to control and maintain the inflation and stimulate growth; set a priority goal for sustainable economic growth; not pursue economic growth by maintaining the inflation rate in the long term, but take appropriate measures to stabilize the inflation at the best-fitted VAR forecast model.