• 제목/요약/키워드: Vasculature

검색결과 158건 처리시간 0.021초

재발성 설암으로 오인된 하악골 골수염 1예 (A Case of Mandible Osteomyelitis Mimicking Recurrent Tongue Cancer)

  • 박상헌;정광진;박민우;정광윤
    • 대한두경부종양학회지
    • /
    • 제29권2호
    • /
    • pp.65-67
    • /
    • 2013
  • Osteomyelitis is an infection of bone or bone marrow, caused by pyogenic bacteria or mycobacterium. Osteomyelitis can be acute or chronic, inflammatory process of the bone and its structures. Chronic osteomyelitis will result in variable sclerosis and deformity of the affected bone. With an infection of the bone, the subsequent inflammatory response will elevate this overlying periosteum, leading to a loss of the nourishing vasculature, vascular thrombosis, and bone necrosis, resulting occasionally in formation of sequestra. These become areas that are more resistant to systemic antibiotic therapy due to lack of the normal Havesian canals that are blocked by scar tissue. At this aspect, not only systemic antibiotic therapy, but also surgical debridement maybe required to remove the affected bone and prevent disease propagation to adjacent areas. We experienced a patient who diagnosed tongue cancer and underwent wide partial glossectomy few years before, with an ulcerative lesion around right retromolar trigon. We diagnosed cancer recurrence because PET indicated hot uptake on mandible which was nearby previous tongue tumor site. The patient received hemiglossectomy via paramedian mandibulotomy, partial mandibulectomy and fibula osteocutaneous free flap reconstruction. But final diagnosis was mandible osteomyelitis on pathology report. Here, we present the case with a review of the related literatures.

In vivo Angiogenic Activity of Dichloromethane Extracts of Aloe vera Gel

  • Lee, Myoung-Jin;Yoon, Soo-Hong;Lee, Seung-Ki;Chung, Myung-Hee;Park, Young-In;Sung, Chung-Ki;Choi, Jae-Sue;Kim, Kyu-Won
    • Archives of Pharmacal Research
    • /
    • 제18권5호
    • /
    • pp.332-335
    • /
    • 1995
  • The angiogenic activity of Aloe vera (Aloe baradensis), known as a good healing plant, was investigated. We have extracted and fractionated dichloromethane extract (G1M1D1) and methanol soluble fraction of dichloromethane extract (G1M1D1M1) which contain low-molecular weight substances of Aloe vera gel. G1M1D1 and G1D1M1 fractions induced a radially arranged, spoke-sheel-like vasculature in chick embryo chorioallantoic membrane (CAM) assay. The angiogenic activity was dose-dependent and the angiogenic pattern in the CAM assay. The angiogenic activity was dose-dependent and the angiogenic pattern in the CAM assay was very similar to that of phorbol 12-myristate-13-acetate (PMA) used as a positive control. The modified CAM assay, e simple and accurate quantitating method, was used to quntitate the angiogenic activity of G1D1M1 fraction. Application of G1M1D1M1 fraction ($100\mug/egg$) resulted in much more intense angiogenesis than in control while slightly less intense angiogenesis than in PMA (100 ng/egg).

  • PDF

Tumoral Accumulation of Long-Circulating, Self-Assembled Nanoparticles and Its Visualization by Gamma Scintigraphy

  • Cho, Yong-Woo;Kim, Yoo-Shin;Kim, In-San;Park, Rang-Woon;Oh, Seung-Jun;Moon, Dae-Hyuk;Kim, Sang-Yoon;Kwon, Ick-Chan
    • Macromolecular Research
    • /
    • 제16권1호
    • /
    • pp.15-20
    • /
    • 2008
  • The enhanced permeability and retention (EPR) effect is used extensively for the passive targeting of many macromolecular drugs for tumors. Indeed, the EPR concept has been a gold standard in polymeric anticancer drug delivery systems. This study investigated the tumoral distribution of self-assembled nanoparticles based on the EPR effect using fluorescein and radio-labeled nanoparticles. Self-assembled nanoparticles were prepared from amphiphilic chitosan derivatives, and their tissue distribution was examined in tumor-bearing mice. The size of the nanoparticles was controlled to be 330 run, which is a size suited for opening between the defective endothelial cells in tumors. The long-circulating polymer nanoparticles were allowed to gradually accumulate in the tumors for 11 days. The amount of nanoparticles accumulated in the tumors was remarkably augmented from 3.4%ID/g tissue at 1 day to 25.9%ID/g tissue at 11 days after i.v. administration. The self-assembled nanoparticles were sustained at a high level throughout the 14 day experimental period, indicating their long systemic retention in the blood circulation. The ${\gamma}$-images provided clear evidence of selective tumor localization of the $^{131}I$-labeled nanoparticles. Confocal microscopy revealed the fluorescein-labeled nanoparticles to be preferentially localized in the perivascular regions, suggesting their extravasation to the tumors through the hyperpermeable angiogenic tumor vasculature. This highly selective tumoral accumulation of nanoparticles was attributed to the leakiness of the blood vessels in the tumors and their long residence time in the blood circulation.

Hypoxia-Induced Endothelial Progenitor Cell Function Is Blunted in Angiotensinogen Knockout Mice

  • Choi, Jin-Hwa;Nguyen, Minh-Phuong;Lee, Dongjin;Oh, Goo-Taeg;Lee, You-Mie
    • Molecules and Cells
    • /
    • 제37권6호
    • /
    • pp.487-496
    • /
    • 2014
  • Angiotensinogen (AGT), the precursor of angiotensin I, is known to be involved in tumor angiogenesis and associated with the pathogenesis of coronary atherosclerosis. This study was undertaken to determine the role played by AGT in endothelial progenitor cells (EPCs) in tumor progression and metastasis. It was found that the number of EPC colonies formed by AGT heterozygous knockout ($AGT^{+/-}$) cells was less than that formed by wild-type (WT) cells, and that the migration and tube formation abilities of $AGT^{+/-}$ EPCs were significantly lower than those of WT EPCs. In addition, the gene expressions of vascular endothelial growth factor (VEGF), Flk1, angiopoietin (Ang)-1, Ang-2, Tie-2, stromal derived factor (SDF)-1, C-X-C chemokine receptor type 4 (CXCR4), and of endothelial nitric oxide synthase (eNOS) were suppressed in $AGT^{+/-}$ EPCs. Furthermore, the expressions of hypoxia-inducible factor (HIF)-$1{\alpha}$and $-2{\alpha}$ were downregulated in $AGT^{+/-}$ early EPCs under hypoxic conditions, suggesting a blunting of response to hypoxia. Moreover, the activation of Akt/eNOS signaling pathways induced by VEGF, epithelial growth factor (EGF), or SDF-$1{\alpha}$ were suppressed in $AGT^{+/-}$ EPCs. In $AGT^{+/-}$ mice, the incorporation of EPCs into the tumor vasculature was significantly reduced, and lung tumor growth and melanoma metastasis were attenuated. In conclusion, AGT is required for hypoxia-induced vasculogenesis.

Sanguiin H-6 Blocks Endothelial Cell Growth through Inhibition of VEGF Binding to VEGF Receptor

  • Lee Sung-Jin;Lee Hak-Kyo
    • Archives of Pharmacal Research
    • /
    • 제28권11호
    • /
    • pp.1270-1274
    • /
    • 2005
  • The vascular endothelial growth factor (VEGF) plays a key role in angiogenesis, which is a process where new blood vessels develop from the endothelium of a pre-existing vasculature. VEGF exerts its activity by binding to its receptor tyrosine kinase, KDR/Flk-1, which is expressed on the surface of endothelial cells. A methanol extract and organic solvent (n-hexane, ethyl acetate, n-butanol, aqueous) fractions from Rubus coreanus were examined for their inhibitory effects on VEGF binding to the VEGF receptor. The methanol extract from the crude drug were found to significantly inhibit VEGF binding to the VEGF receptor ($IC_{50}$$\thickapprox$27 $\mu$g/mL). Among the fractions examined, the aqueous fraction from the medicinal plant showed potent inhibitory effects against the binding of KDR/Flk-1-Fc to immobilized $VEGF_{165}$ in a dose­dependent manner ($IC_{50}$$\thickapprox$11 $\mu$g/mL). Sanguiin H-6 was isolated as an active principle from the aqueous fraction, and inhibited the binding of KDR/Flk-1-Fc to immobilized $VEGF_{165}$ in a dose­dependent manner ($IC_{50}$$\thickapprox$0.3 $\mu$g/mL). In addition, sanguiin H-6 efficiently blocked the VEGF­induced HUVEC proliferation in a dose-dependent manner ($IC_{50}$$\thickapprox$7.4 $\mu$g/mL) but had no effect on the growth of HT1080 human fibrosarcoma cells. This suggests that sanguiin H-6 might be a potential anti-angiogenic agent.

Effect of hypoxia on angiogenesis-related proteins in human dental pulp cells

  • Kim, Mi-Kyoung;Kim, So-Jeong;Kim, Yeon;Park, Hyun-Joo;Jo, Min-Jee;Bae, Soo-Kyung;Kim, Hyung Joon;Bae, Moon-Kyoung
    • International Journal of Oral Biology
    • /
    • 제41권3호
    • /
    • pp.155-161
    • /
    • 2016
  • Dental pulp is a highly vascularized tissue with high regenerative potential. Revascularization of severed vasculature in the tooth is required for pulp healing during avulsed tooth treatment. In this study, the relative expression of angiogenesis-related proteins was determined in human dental pulp cells using a human angiogenesis proteome profiler array. The proteome profiler array detected differentially expressed angiogenesis-related factors under conditions of hypoxia, which enhances the angiogenic potential of dental pulp cells. We confirmed that hypoxia regulates the mRNA expression of angiogenesis-related factors, including CXCL16 in dental pulp cells. Furthermore, conditioned media of hypoxic pulp cells induced tube-like structures of vascular endothelial cells, which were reduced by the neutralization of CXCL16 function. In conclusion, our data show that angiogenesis-related factors are differentially expressed by hypoxia in dental pulp cells and suggest that CXCL16 may involve in the revascularization of hypoxic dental pulp.

The arterial blood supply of the temporomandibular joint: an anatomical study and clinical implications

  • Cuccia, Antonino Marco;Caradonna, Carola;Caradonna, Domenico;Anastasi, Giuseppe;Milardi, Demetrio;Favaloro, Angelo;De Pietro, Anita;Angileri, Tommaso Maurizio;Caradonna, Luigi;Cutroneo, Giuseppina
    • Imaging Science in Dentistry
    • /
    • 제43권1호
    • /
    • pp.37-44
    • /
    • 2013
  • Purpose: The aim of this study was to analyze three-dimensional images of the arterial supply to the temporo-mandibular joint. Materials and Methods: Ten patients (five men and five women, mean age 36 years) without signs or symptoms of temporomandibular disorders, who underwent contrast-enhanced computed tomographic (CT) scanning with intravenous contrast, were studied. The direct volume rendering technique of CT images was used, and a data set of images to visualize the vasculature of the human temporomandibular joint in three dimensions was created. After elaboration of the data through post-processing, the arterial supply of the temporomandibular joint was studied. Results: The analysis revealed the superficial temporal artery, the anterior tympanic artery, the deep temporal artery, the auricular posterior artery, the transverse facial artery, the middle meningeal artery, and the maxillary artery with their branches as the main arterial sources for the lateral and medial temporomandibular joint. Conclusion: The direct volume rendering technique was found to be successful in the assessment of the arterial supply to the temporomandibular joint. The superficial temporal artery and maxillary artery ran along the lateral and medial sides of the condylar neck, suggesting that these arteries are at increased risk during soft-tissue procedures such as an elective arthroplasty of the temporomandibular joint.

신생혈관 억제제 KJ3, Betulinic acid, Fumagillin의 혈관형성억제 및 신경모세포종에 대한 치료효과 (Inhibition of Tumor Growth and Angiogenesis by KJ3, Betulinic Acid, and Fumagillin in Mouse Neuroblastoma)

  • 최승훈;이정희;황의호
    • Advances in pediatric surgery
    • /
    • 제8권2호
    • /
    • pp.101-106
    • /
    • 2002
  • The antiangiogenic effects of novel agent KJ3, Betulinic acid, and Fumagillin on the neovascularization were studied by examining ultrastructural alterations in the vasculature of synthetic gelform and mouse neuroblastoma C1300. Small pieces of gelform with 0.4% agar were introduced subcutaneously (s.c.) in 7 week old male CH3/HeJ mice. After the $LD_{50}s$ were determined by FACS analysis, a third of $LD_{50}$ of three drugs were injected either locally or intraperitoneally every other day for 14 days. A/J mice were inoculated s.c. with the C1300 neuroblastoma cell line, then either saline or three drugs were injected in the same manner. The antiangiogenic effects of three drugs were studied by measuring the histologic changes in tumors, and immunostaining for CD34, VIII/vWF, CD105, and thymidine phosphorylase. In the drug treated groups, the number of vessels in gelform experiments and C1300 neuroblastoma experiments were lower than the corresponding values in the control. The histologic findings were significantly different in drug treated groups on day 7, but these were not significant on day 14. These results imply that antiangiogenic agents were effective when the tumor burden is minimal.

  • PDF

가토의 상악동 골이식술시 혈소판 농축 혈장(Platelet Rich Plasma)의 골형성 효과 (EFFECT OF PRP (PLATELET RICH PLASMA) ON SINUS BONE GRAFTING IN RABBIT)

  • 김용윤;권경환;최문기;오승환;민승기
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제27권2호
    • /
    • pp.140-150
    • /
    • 2005
  • Maxillary sinus lifting procedure and bone grafting are used to reconstruct atrophic maxillae. These procedure are usually followed by the placement of endosseous dental implants. Different materials and techniques can be used for sinus bone grafting. Platelets are known to contain various growth factors involved in the repair of the vasculature and tissues, and it is known that the specialized platelet secretory granules, the alpha granules, contain platelet derived growth factor(PDGF), transforming growth factor-beta(TGF-beta), insuline like growth factor-I(IGF-I), epidermoid growth factor(EGF), and others. This study was to evaluate the effect of PRP on bone formation in a sinus bone grafting. Twelve rabbits were included in this randomized, blinded, prospective pilot study. In experimental group, sinus bone grafting with autobone and platelet rich plasma. In control group, sinus bone grafting with only autobone. Rabbits were sacrificed at 2nd, 4th, 8th, 12th weeks postoperatively. Clinical and radiographic tests, histological analysis were conducted to compare both sides. In clinical examination, there in no significant difference between experimental group and control group. But, in radiographic examination, a distinct incresed in the radiopaque of the PRP experimental group at 2nd and 4th weeks. The histologic examination revealed that more new bone formation and osteoblast activity were seen in experimental group at 2nd and 4th weeks. In conclusion, PRPs action in sinus bone grafting had a capacity of increased new bone formation in a early bone healing stage.

Molecular Imaging of Arthritis in the Angiogenic Vasculature Using A 123I-Vascular Endothelial Growth Factor Receptor Antibody

  • Kim, Sung-Min;Choi, Na-Eun;Song, Young-Kyu;Cho, Gyung-Goo;Bang, Jeong-Kyu;Kim, Sang-Mi;Lee, Sang-Hoon;Ryu, Eun-Kyoung
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권6호
    • /
    • pp.1890-1894
    • /
    • 2012
  • Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) have been implicated in the pathogenesis of rheumatoid arthritis, which is angiogenesis dependent. Antibody-based molecular imaging improves targeting, and antibody radiolabeling is useful for monitoring biological events $in$ $vivo$ $via$ PET or SPECT. We investigated the potential of molecular imaging to diagnose arthritis with VEGFR-2 $in$ $vivo$. The $^{123}I$-VEGFR-2 antibody was prepared by the iodogen tube method. The radioligand was injected into arthritic mice, and micro SPECT/CT was performed. The arthritic mice were examined by 4.7-T MRI and immunohistochemistry. The $^{123}I$-VEGFR-2 antibody showed high uptake in the arthritic region at 1 h postinjection on SPECT/CT but no uptake in the control animals after radioligand injection. In MR images, the arthritic tissue of the mice was correlated with regions labeled by the $^{123}I$-VEGFR-2 antibody. Immunohistochemical localization showed markedly increased expression of VEGFR-2 in the endothelial cells, fibroblasts, and macrophages of the arthritic mice.