• 제목/요약/키워드: Vascular endothelial growth factor receptor (VEGFR)

검색결과 56건 처리시간 0.026초

Increased expression of vascular endothelial growth factor-C and vascular endothelial growth factor receptor-3 after pilocarpine-induced status epilepticus in mice

  • Cho, Kyung-Ok;Kim, Joo Youn;Jeong, Kyoung Hoon;Lee, Mun-Yong;Kim, Seong Yun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권4호
    • /
    • pp.281-289
    • /
    • 2019
  • Vascular endothelial growth factor (VEGF)-C and its receptor, vascular endothelial growth factor receptor (VEGFR)-3, are responsible for lymphangiogenesis in both embryos and adults. In epilepsy, the expression of VEGF-C and VEGFR-3 was significantly upregulated in the human brains affected with temporal lobe epilepsy. Moreover, pharmacologic inhibition of VEGF receptors after acute seizures could suppress the generation of spontaneous recurrent seizures, suggesting a critical role of VEGF-related signaling in epilepsy. Therefore, in the present study, the spatiotemporal expression of VEGF-C and VEGFR-3 against pilocarpine-induced status epilepticus (SE) was investigated in C57BL/6N mice using immunohistochemistry. At 1 day after SE, hippocampal astrocytes and microglia were activated. Pyramidal neuronal death was observed at 4 days after SE. In the subpyramidal zone, VEGF-C expression gradually increased and peaked at 7 days after SE, while VEGFR-3 was significantly upregulated at 4 days after SE and began to decrease at 7 days after SE. Most VEGF-C/VEGFR-3-expressing cells were pyramidal neurons, but VEGF-C was also observed in some astrocytes in sham-manipulated animals. However, at 4 days and 7 days after SE, both VEGFR-3 and VEGF-C immunoreactivities were observed mainly in astrocytes and in some microglia of the stratum radiatum and lacunosum-moleculare of the hippocampus, respectively. These data indicate that VEGF-C and VEGFR-3 can be upregulated in hippocampal astrocytes and microglia after pilocarpine-induced SE, providing basic information about VEGF-C and VEGFR-3 expression patterns following acute seizures.

구강 편평상피세포암에서 상피성장인자 수용체와 혈관내피성장인자 수용체 타이로신 활성화효소의 동시 억제 (CONCOMITANT INHIBITION OF EPIDERMAL GROWTH FACTOR AND VASCULAR ENDOTHELIAL GROWTH FACTOR RECEPTOR TYROSINE KINASES IN ORAL SQUAMOUS CELL CARCINOMA)

  • 박영욱;이상신
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제28권3호
    • /
    • pp.193-201
    • /
    • 2006
  • Squamous cell carcinoma(SCC) of head and neck(SCCHN) is the sixth most common human malignant tumor. However, despite advances in prevention and treatment of SCC, the five-year survival rates for patients remain still low. To improve the outcome for patients with SCCHN, novel treatment strategies are needed. Overexpression of the epidermal growth factor(EGF) and activation of its receptor(EGFR) are associated with progressive growth of SCCHN. Vascular endothelial growth factor(VEGF) signaling molecules are related with neoangiogenesis and vascular metastasis of SCC. In this study, we determined the therapeutic effect of AEE788(Novartis Pharma AG, Basel, Switzerland), which is a dual inhibitor of EGFR/ErbB2 and VEGFR tyrosine kinases, on human oral SCC. At first, we screened the expression of EGFR, c-ErbB2(HER-2) and VEGFR-2 in a series of human oral SCC cell lines. And then we evaluated the effects of AEE788 on the phosphorylation of EGFR and VEGFR-2 in a oral SCC cell line expressing EGFR/HER-2 and VEGFR-2. We also evaluated the effects of AEE788 alone, or with paclitaxel(Taxol) on the oral SCC cell growth and apoptosis. As a result, all oral SCC cells expressed EGFR and VEGFR-2. Treatment of oral SCC cells with AEE788 led to dose-dependent inhibition of EGFR and VEGFR-2 phosphorylation, growth inhibition, and induction of apoptosis. Moreover, AEE788 sensitizes the cells to paclitaxel-mediated toxicity and apoptosis. These data mean EGFR and VEGFR-2 can be reliable targets for molecular therapy of oral SCC, and therefore warrant clinical use of EGFR/VEGFR inhibition in the treatment of patients with recurrent or metastatic oral SCC.

Differential Roles of Vascular Endothelial Growth Factor Receptor-1 and Receptor-2 in Angiogenesis

  • Shibuya, Masabumi
    • BMB Reports
    • /
    • 제39권5호
    • /
    • pp.469-478
    • /
    • 2006
  • Vascular endothelial growth factor (VEGF)-A, a major regulator for angiogenesis, binds and activates two tyrosine kinase receptors, VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1). These receptors regulate physiological as well as pathological angiogenesis. VEGFR2 has strong tyrosine kinase activity, and transduces the major signals for angiogenesis. However, unlike other representative tyrosine kinase receptors which use the Ras pathway, VEGFR2 mostly uses the Phospholipase-$C{\gamma}$-Protein kinase-C pathway to activate MAP-kinase and DNA synthesis. VEGFR2 is a direct signal transducer for pathological angiogenesis including cancer and diabetic retinopathy, thus, VEGFR2 itself and the signaling appear to be critical targets for the suppression of these diseases. VEGFR1 plays dual role, a negative role in angiogenesis in the embryo most likely by trapping VEGF-A, and a positive role in adulthood in a tyrosine kinase-dependent manner. VEGFR1 is expressed not only in endothelial cells but also in macrophage-lineage cells, and promotes tumor growth, metastasis, and inflammation. Furthermore, a soluble form of VEGFR1 was found to be present at abnormally high levels in the serum of preeclampsia patients, and induces proteinurea and renal dysfunction. Therefore, VEGFR1 is also an important target in the treatment of human diseases. Recently, the VEGFR2-specific ligand VEGF-E (Orf-VEGF) was extensively characterized. Interestingly, the activation of VEGFR2 via VEGF-E in vivo results in a strong angiogenic response in mice with minor side effects such as inflammation compared with VEGF-A, suggesting VEGF-E to be a novel material for pro-angiogenic therapy.

Soluble Expression and Purification of the Catalytic Domain of Human Vascular Endothelial Growth Factor Receptor 2 in Escherichia coli

  • Wei, Jia;Cao, Xiaodan;Zhou, Shengmin;Chen, Chao;Yu, Haijun;Zhou, Yao;Wang, Ping
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권8호
    • /
    • pp.1227-1233
    • /
    • 2015
  • Vascular endothelial growth factor (VEGF) plays a key role in angiogenesis through binding to its specific receptors, which mainly occurs to VEGF receptor 2 (VEGFR-2), a kinase insert domain-containing receptor. Therefore, the disruption of VEGFR-2 signaling provides a promising therapeutic approach for the treatment of cancer by inhibiting abnormal or tumorinduced angiogenesis. To explore this potential, we expressed the catalytic domain of VEGFR-2 (VEGFR-2-CD) as a soluble active kinase in Escherichia coli. The recombinant protein was purified and the VEGFR-2-CD activity was investigated. The obtained VEGFR-2-CD showed autophosphorylation activity and phosphate transfer activity comparable to the commercial enzyme. Furthermore, the IC50 value of known VEGFR-2 inhibitor was determined using the purified VEGFR-2-CD. These results indicated a possibility for functional and economical VEGFR-2-CD expression in E. coli to use for inhibitor screening.

구강 편평상피세포암 동위종양 모델에서 내피세포의 수용체 타이로신 인산화효소에 대한 표적치료 (TARGETING RECEPTOR TYROSINE KINASE ON ENDOTHELIAL CELLS IN AN ORTHOTOPIC TUMOR MODEL OF ORAL SQUAMOUS CELL CARCINORMA)

  • 박영욱;김소희
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제35권2호
    • /
    • pp.55-65
    • /
    • 2009
  • Purpose: We determined the therapeutic effects of blockade of epidermal growth factor(EGF) and vascular endothelial growth factor(VEGF) receptor tyrosine kinases on the growth of oral squamous cell carcinoma(OSCC) xenografted in athymic nude mice. Experimental Design: We investigated the in vivo antitumor effects of a tyrosine kinase inhibitor for EGFR and VEGFR-2, AEE788 in a mouth floor(orthotopic) tumor model. Nude mice with orthotopic tumors were randomized to receive AEE788, paclitaxel, a combination of AEE788 and paclitaxel, or control. Antitumor mechanisms of AEE788 were determined by immunohistochemical/immunofluorescent and apoptosis assays. Results: Tumors of mice treated with AEE788 demonstrated down-regulation of phosphorylated EGFR, phosphorylated VEGFR and their downstream mediators(pMAPK and pAkt), decreased proliferative index, decreased microvessel density(MVD). As a result, growth of the primary tumor and nodal metastatic potentials were inhibited by AEE788. Conclusion: These data show that EGFR and VEGFR can be molecular targets for the treatment of OSCC.

침샘 선양낭성암종의 세포학적, 분자생물학적 특성에 관한 연구 (CELLULAR AND MOLECULAR CHARACTERIZATION OF ADENOID CYSTIC CARCINOMA OF THE SALIVARY GLANDS)

  • 박영욱
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제27권2호
    • /
    • pp.110-122
    • /
    • 2005
  • Adenoid cystic carcinoma (ACC) of salivary glands has a protracted clinical course with perineural invasion, delayed onset of hematogenous metastasis, and poor responses to classical cytotoxic chemotherapic agents. Most deaths from salivary ACC are caused by lung metastases that are resistant to conventional therapy. Therefore, knowledge of cellular properties and tumor-host interactions that influence the dissemination of metastatic cells is important for the design of more effective therapy of salivary cancer. I determined in vitro expression of epidermal growth factor receptor (EGFR) and its downstream effectors and vascular endothelial growth factor receptor (VEGFR)-2 on a human salivary ACC cell line (ACC2). I also evaluated the expression of EGF and VEGF signaling molecules and metastasis-related proteins on human salivary ACC cells orthotopically growing in nude mice. In Western blot and immunohistochemical analyses, EGFR and VEGFR-2 were presented and phosphorylated in ACC2 cells. In human parotid cancer xenografts in nude mice, EGF and VEGF signaling molecules, IL-8, and MMP-9 were expressed at markedly higher levels than in normal parotid tissues. Moreover, tumor-associated endothelial cells of this orthotopic parotid tumor expressed phosphorylated VEGFR-2 and phosphorylated Akt, which is a cell-survival protein. These data show that those biomarkers can be molecular targets for therapy of salivary ACC, which has a propensity for delayed lung metastasis.

암의 혈관내피 성장인자에 대한 분자적 통찰: 혈관신생과 전이 (The Molecular Insight into the Vascular Endothelial Growth Factor in Cancer: Angiogenesis and Metastasis)

  • 이한나;서채은;정미숙;장세복
    • 생명과학회지
    • /
    • 제34권2호
    • /
    • pp.128-137
    • /
    • 2024
  • 이 리뷰 논문에서는 혈관 투과성, 내피세포 모집, 종양관련 혈관 및 림프관의 유지 등에서 핵심적인 과정인 angiogenesis와 lymphangiogenesis에 있어서 vascular endothelial growth factors (VEGF)가 이행하는 중요한 역할에 대해 재조명하고자 한다. VEGF는 tyrosine-kinase receptor인 VEGFR-1, VEGFR-2, VEGFR-3를 통해 그 역할을 이행하며, 이러한 VEGF-VEGFR 시스템은 암에서뿐만 아니라 비정상적인 혈관 및 림프관 형성으로 인해 야기되는 다른 질병들에 있어서도 핵심적인 요소로 각광받고 있다. 암의 측면에서 보았을 때, VEGF와 그 수용체는 종양관련 혈관 및 림프관을 형성하는 과정에서 필수적이라는 점에서 치료적인 타겟으로 이목을 끌고 있다. 때문에 암세포의 성장을 방해하기 위한 항VEGF 항체, 수용체 길항체, 수용체 기능 억제제 등과 같은 여러 가지 시도들이 있었지만, 아직까지 그 임상효과가 불확실하며 더 많은 연구들이 필요한 실정이다. 이 논문에서는 VEGF의 생리적 역할을 VEGF-A, VEGF-B, VEGF-C, VEGF-D, PLGF에 따라 나누어 설명하면서 VEGF/VEGFR 시스템의 중요성을 강조한다. VEGFR-1과 VEGFR-3은 각각 angiogenesis와 lymphangiogenesis에 핵심적인 인자이며, VEGFR-2의 경우 두 가지 모두를 일으킨다. 전반적으로 이 리뷰는 현재까지 밝혀진 암을 포함한 다양한 질병에서의 VEGF와 VEGFR의 역할에 대해 상세히 설명하고자 하였다. 이를 통해 치료 표적으로서 VEGF와 VEGFR의 활용이 더욱 촉진될 것으로 기대된다.

혈관내피세포성장인자 억제제에 의한 구강편평상피세포암종 세포주의 성장 억제 효과 (ANTI-TUMOR EFFECTS OF VASCULAR ENDOTHELIAL GROWTH FACTOR INHIBITOR ON ORAL SQUAMOUS CELL CARCINOMA CELL LINES)

  • 한세진;이재훈
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제35권2호
    • /
    • pp.66-73
    • /
    • 2009
  • Tumor angiogenesis is a process leading to formation of blood vessels within tumors and is crucial for maintaining a supply of oxygen and nutrients to support tumor growth and metastasis. Vascular endothelial growth factor(VEGF) plays a key role in tumor angiogenesis including induction of endothelial cell proliferation, migration, survival and capillary tube formation. VEGF binds to two distinct receptors on endothelial cells. VEGFR-2 is considered to be the dominant signaling receptor for endothelial cell permeability, proliferation, and differentiation. Bevacizumab(Avastin, Genetech, USA) is a monoclonal antibody against vascular endothelial growth factor. It is used in the treatment of cancer, where it inhibits tumor growth by blocking the formation of new blood vessels. The goal of this study is to identify the anti-tumor effect of Bevacizumab(Avastin) for oral squamous cell carcinoma cell lines. Human squamous cell carcinoma cell line(HN4) was used in this study. We examined the sensitivity of HN4 cell line to Bevacizumab(Avastin) by using in vitro proliferation assays. The results were as follows. 1. In the result of MTT assay according to concentration of Bevacizumab(Avastin), antiproliferative effect for oral squamous cell carcinoma cell lines was observed. 2. The growth curve of cell line showed the gradual growth inhibition of oral squamous cell carcinoma cell lines after exposure of Bevacizumab(Avastin). 3. In the apoptotic index, groups inoculated Bevacizumab(Avastin) were higher than control groups. 4. In condition of serum starvation, VEGFR-2 did not show any detectable autophosphorylation, whereas the addition of VEGF activated the receptor. Suppression of phosphorylated VEGFR-2 and phosphorylated MAPK was observed following treatment with Bevacizumab(Avastin) in a dose-dependent manner. 5. In TEM view, dispersed nuclear membrane, scattered many cytoplasmic vacuoles and localized chromosomal margination after Bevacizumab(Avastin) treatment were observed. These findings suggest that Bevacizumab(Avastin) has the potential to inhibit MAPK pathway in proliferation of oral squamous cell carcinoma cell lines via inhibition of VEGF-dependent tumor growth.

Structure and function of vascular endothelial growth factor and its receptor system

  • Park, Seong Ah;Jeong, Mi Suk;Ha, Ki-Tae;Jang, Se Bok
    • BMB Reports
    • /
    • 제51권2호
    • /
    • pp.73-78
    • /
    • 2018
  • Vascular endothelial growth factor and its receptor (VEGF-VEGFR) system play a critical role in the regulation of angiogenesis and lymphangiogenesis in vertebrates. Each of the VEGF has specific receptors, which it activates by binding to the extracellular domain of the receptors, and, thus, regulates the angiogenic balance in the early embryonic and adult stages. However, de-regulation of the VEGF-VEGFR implicates directly in various diseases, particularly cancer. Moreover, tumor growth needs a dedicated blood supply to provide oxygen and other essential nutrients. Tumor metastasis requires blood vessels to carry tumors to distant sites, where they can implant and begin the growth of secondary tumors. Thus, investigation of signaling systems related to the human disease, such as VEGF-VEGFR, will facilitate the development of treatments for such illnesses.

Oleanolic Acids Inhibit Vascular Endothelial Growth Factor Receptor 2 Signaling in Endothelial Cells: Implication for Anti-Angiogenic Therapy

  • Lee, Da-Hye;Lee, Jungsul;Jeon, Jongwook;Kim, Kyung-Jin;Yun, Jang-Hyuk;Jeong, Han-Seok;Lee, Eun Hui;Koh, Young Jun;Cho, Chung-Hyun
    • Molecules and Cells
    • /
    • 제41권8호
    • /
    • pp.771-780
    • /
    • 2018
  • Angiogenesis must be precisely controlled because uncontrolled angiogenesis is involved in aggravation of disease symptoms. Vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR-2) signaling is a key pathway leading to angiogenic responses in vascular endothelial cells (ECs). Therefore, targeting VEGF/VEGFR-2 signaling may be effective at modulating angiogenesis to alleviate various disease symptoms. Oleanolic acid was verified as a VEGFR-2 binding chemical from anticancer herbs with similar binding affinity as a reference drug in the Protein Data Bank (PDB) entry 3CJG of model A coordination. Oleanolic acid effectively inhibited VEGF-induced VEGFR-2 activation and angiogenesis in HUVECs without cytotoxicity. We also verified that oleanolic acid inhibits in vivo angiogenesis during the development and the course of the retinopathy of prematurity (ROP) model in the mouse retina. Taken together, our results suggest a potential therapeutic benefit of oleanolic acid for inhibiting angiogenesis in proangiogenic diseases, including retinopathy.