Browse > Article
http://dx.doi.org/10.5483/BMBRep.2018.51.2.233

Structure and function of vascular endothelial growth factor and its receptor system  

Park, Seong Ah (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
Jeong, Mi Suk (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
Ha, Ki-Tae (Department of Korean Medical Science, School of Korean Medicine and Korean Medicine Research Centre for Healthy Aging, Pusan National University)
Jang, Se Bok (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
Publication Information
BMB Reports / v.51, no.2, 2018 , pp. 73-78 More about this Journal
Abstract
Vascular endothelial growth factor and its receptor (VEGF-VEGFR) system play a critical role in the regulation of angiogenesis and lymphangiogenesis in vertebrates. Each of the VEGF has specific receptors, which it activates by binding to the extracellular domain of the receptors, and, thus, regulates the angiogenic balance in the early embryonic and adult stages. However, de-regulation of the VEGF-VEGFR implicates directly in various diseases, particularly cancer. Moreover, tumor growth needs a dedicated blood supply to provide oxygen and other essential nutrients. Tumor metastasis requires blood vessels to carry tumors to distant sites, where they can implant and begin the growth of secondary tumors. Thus, investigation of signaling systems related to the human disease, such as VEGF-VEGFR, will facilitate the development of treatments for such illnesses.
Keywords
Angiogenesis; Drugs; Signal transduction; Tumor growth and metastasis; Vascular endothelial growth factor (VEGF);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Oguro Y, Miyamoto N, Okada K et al (2010) Design, synthesis, and evaluation of 5-methyl-4-phenoxy-5Hpyrrolo[ 3,2-d]pyrimidine derivatives: novel VEGFR2 kinase inhibitors binding to inactive kinase conformation. Bioorg Med Chem 18, 7260-7273   DOI
2 Fong GH, Rossant J, Gertsenstein M and Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66-70   DOI
3 Hiratsuka S, Minowa O, Kuno J, Noda T and Shibuya M (1998) Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci U S A 95, 9349-9354   DOI
4 Landgren E, Schiller P, Cao Y and Claesson-Welsh L (1998) Placenta growth factor stimulates MAP kinase and mitogenicity but not phospholipase C-gamma and migration of endothelial cells expressing Flt 1. Oncogene 16, 359-367   DOI
5 Sawano A, Takahashi T, Yamaguchi S and Shibuya M (1997) The phosphorylated 1169-tyrosine containing region of flt-1 kinase (VEGFR-1) is a major binding site for PLCgamma. Biochem Biophys Res Commun 238, 487-491   DOI
6 Cunningham SA, Waxham MN, Arrate PM and Brock TA (1995) Interaction of the Flt-1 tyrosine kinase receptor with the p85 subunit of phosphatidylinositol 3-kinase. Mapping of a novel site involved in binding. J Biol Chem 270, 20254-20257   DOI
7 Katoh O, Tauchi H, Kawaishi K, Kimura A and Satow Y (1995) Expression of the vascular endothelial growth factor (VEGF) receptor gene, KDR, in hematopoietic cells and inhibitory effect of VEGF on apoptotic cell death caused by ionizing radiation. Cancer Res 55, 5687-5692
8 Shalaby F, Rossant J, Yamaguchi TP et al (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376, 62-66   DOI
9 Holmqvist K, Cross MJ, Rolny C et al (2004) The adaptor protein shb binds to tyrosine 1175 in vascular endothelial growth factor (VEGF) receptor-2 and regulates VEGF-dependent cellular migration. J Biol Chem 279, 22267-22275   DOI
10 Matsumoto T, Bohman S, Dixelius J et al (2005) VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. EMBO J 24, 2342-2353   DOI
11 Karkkainen MJ, Haiko P, Sainio K et al (2004) Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5, 74-80   DOI
12 Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285, 1182-1186   DOI
13 Makinen T, Veikkola T, Mustjoki S et al (2001) Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J 20, 4762-4773   DOI
14 Dixelius J, Makinen T, Wirzenius M et al (2003) Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites. J Biol Chem 278, 40973-40979   DOI
15 Hanahan D and Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144, 646-674   DOI
16 Carmeliet P, Moons L, Luttun A et al (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7, 575-583   DOI
17 Davis S, Aldrich TH, Jones PF et al (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87, 1161-1169   DOI
18 Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A and Delbono O (2015) Pericytes at the intersection between tissue regeneration and pathology. Clin Sci (Lond) 128, 81-93   DOI
19 Birbrair A, Zhang T, Wang ZM et al (2014) Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 307, C25-38   DOI
20 Alitalo K and Carmeliet P (2002) Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 1, 219-227   DOI
21 Ferrara N and Davis-Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18, 4-25   DOI
22 Heldin CH and Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79, 1283-1316   DOI
23 Shibuya M, Ito N and Claesson-Welsh L (1999) Structure and function of vascular endothelial growth factor receptor-1 and -2. Curr Top Microbiol Immunol 237, 59-83
24 Wang HU, Chen ZF and Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93, 741-753   DOI
25 Smith GA, Fearnley GW, Harrison MA, Tomlinson DC, Wheatcroft SB and Ponnambalam S (2015) Vascular endothelial growth factors: multitasking functionality in metabolism, health and disease. J Inherit Metab Dis 38, 753-763   DOI
26 Carmeliet P and Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298-307   DOI
27 Shibuya M (2013) Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J Biochem 153, 13-19   DOI
28 Cross MJ, Dixelius J, Matsumoto T and Claesson-Welsh L (2003) VEGF-receptor signal transduction. Trends Biochem Sci 28, 488-494   DOI
29 Maynard SE, Min JY, Merchan J et al (2003) Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 111, 649-658   DOI
30 Hattori K, Heissig B, Wu Y et al (2002) Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat Med 8, 841-849   DOI
31 Irrthum A, Karkkainen MJ, Devriendt K, Alitalo K and Vikkula M (2000) Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase. Am J Hum Genet 67, 295-301   DOI
32 Piao Y, Henry V, Tiao N et al (2017) Targeting intercellular adhesion molecule-1 prolongs survival in mice bearing bevacizumab-resistant glioblastoma. Oncotarget 8, 96970-96983
33 Harris AL (2002) Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer 2, 38-47   DOI
34 Fontanella C, Ongaro E, Bolzonello S, Guardascione M, Fasola G and Aprile G (2014) Clinical advances in the development of novel VEGFR2 inhibitors. Ann Transl Med 2, 123
35 Rockson SG (2001) Lymphedema. Am J Med 110, 288-295   DOI
36 Gerber HP and Ferrara N (2005) Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res 65, 671-680
37 Quesada AR, Munoz-Chapuli R and Medina MA (2006) Anti-angiogenic drugs: from bench to clinical trials. Med Res Rev 26, 483-530   DOI
38 Motzer RJ, Michaelson MD, Redman BG et al (2006) Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol 24, 16-24   DOI
39 Chen X, Zheng Z, Chen L and Zheng H (2017) MAPK, NFkappaB, and VEGF signaling pathways regulate breast cancer liver metastasis. Oncotarget 8, 101452-101460
40 Chen Y, Liu Y, Wang Y et al (2017) Quantification of STAT3 and VEGF expression for molecular diagnosis of lymph node metastasis in breast cancer. Medicine (Baltimore) 96, e8488   DOI
41 Shibuya M (2011) Involvement of Flt-1 (VEGF receptor-1) in cancer and preeclampsia. Proc Jpn Acad Ser B Phys Biol Sci 87, 167-178   DOI
42 de Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N and Williams LT (1992) The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255, 989-991   DOI
43 Terman BI, Carrion ME, Kovacs E, Rasmussen BA, Eddy RL and Shows TB (1991) Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene 6, 1677-1683
44 Shibuya M and Claesson-Welsh L (2006) Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res 312, 549-560   DOI
45 Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M and Heldin CH (1994) Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem 269, 26988-26995
46 Iyer S, Darley PI and Acharya KR (2010) Structural insights into the binding of vascular endothelial growth factor-B by VEGFR-1(D2): recognition and specificity. J Biol Chem 285, 23779-23789   DOI
47 Davis-Smyth T, Chen H, Park J, Presta LG and Ferrara N (1996) The second immunoglobulin-like domain of the VEGF tyrosine kinase receptor Flt-1 determines ligand binding and may initiate a signal transduction cascade. EMBO J 15, 4919-4927
48 Tanaka K, Yamaguchi S, Sawano A and Shibuya M (1997) Characterization of the extracellular domain in vascular endothelial growth factor receptor-1 (Flt-1 tyrosine kinase). Jpn J Cancer Res 88, 867-876   DOI
49 Roskoski R Jr (2008) VEGF receptor protein-tyrosine kinases: structure and regulation. Biochem Biophys Res Commun 375, 287-291   DOI
50 Autiero M, Waltenberger J, Communi D et al (2003) Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med 9, 936-943   DOI
51 Christinger HW, Fuh G, de Vos AM and Wiesmann C (2004) The crystal structure of placental growth factor in complex with domain 2 of vascular endothelial growth factor receptor-1. J Biol Chem 279, 10382-10388   DOI
52 Roskoski R Jr (2007) Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit Rev Oncol Hematol 62, 179-213   DOI
53 Brozzo MS, Bjelic S, Kisko K et al (2012) Thermodynamic and structural description of allosterically regulated VEGFR-2 dimerization. Blood 119, 1781-1788   DOI
54 Leppanen VM, Tvorogov D, Kisko K et al (2013) Structural and mechanistic insights into VEGF receptor 3 ligand binding and activation. Proc Natl Acad Sci U S A 110, 12960-12965   DOI
55 Schirosi L, De Summa S, Tommasi S et al (2017) VEGF and TWIST1 in a 16-biomarker immunoprofile useful for prognosis of breast cancer patients. Int J Cancer 141, 1901-1911   DOI
56 Ruch C, Skiniotis G, Steinmetz MO, Walz T and Ballmer-Hofer K (2007) Structure of a VEGF-VEGF receptor complex determined by electron microscopy. Nat Struct Mol Biol 14, 249-250   DOI
57 Yang Y, Xie P, Opatowsky Y and Schlessinger J (2010) Direct contacts between extracellular membrane-proximal domains are required for VEGF receptor activation and cell signaling. Proc Natl Acad Sci U S A 107, 1906-1911   DOI
58 Markovic-Mueller S, Stuttfeld E, Asthana M et al (2017) Structure of the Full-length VEGFR-1 Extracellular Domain in Complex with VEGF-A. Structure 25, 341-352   DOI
59 Wiesmann C, Fuh G, Christinger HW, Eigenbrot C, Wells JA and de Vos AM (1997) Crystal structure at 1.7 A resolution of VEGF in complex with domain 2 of the Flt-1 receptor. Cell 91, 695-704   DOI
60 McTigue M, Murray BW, Chen JH, Deng YL, Solowiej J and Kania RS (2012) Molecular conformations, interactions, and properties associated with drug efficiency and clinical performance among VEGFR TK inhibitors. Proc Natl Acad Sci U S A 109, 18281-18289   DOI
61 Okamoto K, Ikemori-Kawada M, Jestel A et al (2015) Distinct binding mode of multikinase inhibitor lenvatinib revealed by biochemical characterization. ACS Med Chem Lett 6, 89-94   DOI
62 McTigue MA, Wickersham JA, Pinko C et al (1999) Crystal structure of the kinase domain of human vascular endothelial growth factor receptor 2: a key enzyme in angiogenesis. Structure 7, 319-330   DOI