• 제목/요약/키워드: Vascular Smooth Muscle Cells

검색결과 272건 처리시간 0.032초

Role of vascular smooth muscle cell in the inflammation of atherosclerosis

  • Lim, Soyeon;Park, Sungha
    • BMB Reports
    • /
    • 제47권1호
    • /
    • pp.1-7
    • /
    • 2014
  • Atherosclerosis is a pathologic process occurring within the artery, in which many cell types, including T cell, macrophages, endothelial cells, and smooth muscle cells, interact, and cause chronic inflammation, in response to various inner- or outer-cellular stimuli. Atherosclerosis is characterized by a complex interaction of inflammation, lipid deposition, vascular smooth muscle cell proliferation, endothelial dysfunction, and extracellular matrix remodeling, which will result in the formation of an intimal plaque. Although the regulation and function of vascular smooth muscle cells are important in the progression of atherosclerosis, the roles of smooth muscle cells in regulating vascular inflammation are rarely focused upon, compared to those of endothelial cells or inflammatory cells. Therefore, in this review, we will discuss here how smooth muscle cells contribute or regulate the inflammatory reaction in the progression of atherosclerosis, especially in the context of the activation of various membrane receptors, and how they may regulate vascular inflammation.

Expression of Tumor Necrosis Factor (TNF)-z${\alpha}$ from Cells Undergoing Death by FADD

  • Kim, Koanhoi
    • Journal of Life Science
    • /
    • 제12권2호
    • /
    • pp.57-60
    • /
    • 2002
  • Apoptosis of vascular smooth muscle cell is observed in the vascular diseases such as atherosclerosis and restenosis. The death of vascular smooth muscle cells can be induced by cytokines and activation of Fas-pathways. It is widely accepted that apoptosis occurs without inflammation. There are, however, reports that apoptosis is not silent. Vascular smooth muscle cells dying by Fas-pathway secreted inflammatory cytokines including monocyte chemoattractant protein-1. This study have investigated whether apoptosis is associated with potent inflammatory cytokine tumor tumor necrosis factor (TNF)-${\alpha}$. The cells which undergo apoptosis by expressing FADD in the absence of tetracycline expressed and secreted TNF-${\alpha}$. When the level of TNF-${\alpha}$ transcript was investigated, dying smooth muscle cells exhibited transcriptional activation of TNF-${\alpha}$. The data indicate that dying vascular smooth muscle cells contribute to inflammation by expressing inflammatory cytokines. The present study suggests that apoptosis could not be silent in certain pathological situations.

  • PDF

Porphyromonas gingivalis lipopolysaccharide stimulates vascular smooth muscle cell migration through signal transducer and activator of transcription 3-mediated matrix metalloproteinase-9 expression

  • Kim, Yeon;Park, Joo-Yeon;Park, Hyun-Joo;Kim, Mi-Kyoung;Kim, Yong-Il;Bae, Soo-Kyung;Kim, Hyung Joon;Bae, Moon-Kyoung
    • International Journal of Oral Biology
    • /
    • 제44권1호
    • /
    • pp.20-26
    • /
    • 2019
  • Periodontal diseases have been associated with the development of cardiovascular diseases. Accumulating evidences have indicated that Porphyromonas gingivalis, a major periodontopathic pathogen, plays a critical role in the pathogenesis of atherosclerosis. In the present study, we demonstrated that P. gingivalis lipopolysaccharide (LPS) increases the mRNA and protein expression of matrix metalloproteinase-9 (MMP-9) in rat vascular smooth muscle cells. We showed that the MMP-9 expression induced by P. gingivalis LPS is mediated by the activation of signal transducer and activator of transcription 3 (STAT3) in vascular smooth muscle cells. Furthermore, the inhibition of STAT3 activity reduced P. gingivalis LPS-induced migration of vascular smooth muscle cells. Overall, our findings indicate that P. gingivalis LPS stimulates the migration of vascular smooth muscle cells via STAT3-mediated MMP-9 expression.

Inhibition of the Semaphorin 4D-Plexin-B1 axis prevents calcification in vascular smooth muscle cells

  • Hyun-Joo Park;Yeon Kim;Mi-Kyoung Kim;Hyung Joon Kim;Soo-Kyung Bae;Moon-Kyoung Bae
    • BMB Reports
    • /
    • 제56권3호
    • /
    • pp.160-165
    • /
    • 2023
  • Vascular calcification is common in cardiovascular diseases including atherosclerosis, and is associated with an increased risk of pathological events and mortality. Some semaphorin family members play an important role in atherosclerosis. In the present study, we show that Semaphorin 4D/Sema4D and its Plexin-B1 receptor were significantly upregulated in calcified aorta of a rat chronic kidney disease model. Significantly higher Sema4D and Plexin-B1 expression was also observed during inorganic phosphate-induced calcification of vascular smooth muscle cells. Knockdown of Sema4D or Plexin-B1 genes attenuated both the phosphate-induced osteogenic phenotype of vascular smooth muscle cells, through regulation of SMAD1/5 signaling, as well as apoptosis of vascular smooth muscle cells, through modulation of the Gas6/Axl/Akt survival pathway. Taken together, our results offer new insights on the role of Sema4D and Plexin-B1 as potential therapeutic targets against vascular calcification.

생체에서 분리된 혈관조직에서 아데노바이러스벡터를 이용한 특정 단백질의 발현 (Targeted Protein Expression in Freshly Isolated Vascular Tissues by Using Adenoviral Vector)

  • 허양훈;김학림
    • 약학회지
    • /
    • 제57권4호
    • /
    • pp.265-271
    • /
    • 2013
  • Treatments of vascular disease via modulating the expression of specific proteins by gene transfer have been attempted in various studies over the past few years. Among several methods to deliver genes, adenovirus currently has been used because of a number of positive aspects. In this study, we test adenoviral vector as a potential mediator in the treatment of vascular disease by using freshly isolated vascular tissues not cultured vascular cells. Freshly isolated vascular tissues were directly exposed to adenoviral vector pAd5CMVmcsIRESeGFPpA to check the possibility of GFP expression in different layer of vascular tissues. We found that the GFP expression by using adenoviral vector experiments is mainly focused on the adventitia and failed to detect GFP expression at endothelial layer or vascular smooth muscle layer in vascular tissues. However, we also found that several integrin receptors are robustly expressed in vascular smooth muscle, thus the limited expression of protein in vascular smooth muscle are not likely the lack of integrin receptors. In conclusion, adenovirus could not be a good tool for a specific protein expression in vascular smooth muscle cell. Thus, the application of adenovirus as a tool for gene therapy of vascular smooth muscle cells in clinical therapeutic trial need to be optimized further.

Porphyromonas gingivalis Lipopolysaccharide Regulates Migration of Vascular Smooth Muscle Cells

  • Kim, Yeon;Kim, So-Jeong;Kim, Mi-Kyoung;Park, Hyun-Joo;Kim, Hyung Joon;Bae, Soo-Kyung;Bae, Moon-Kyoung
    • International Journal of Oral Biology
    • /
    • 제41권4호
    • /
    • pp.217-223
    • /
    • 2016
  • Porphyromonas gingivalis, a foremost periodontal pathogen, has been known to cause periodontal diseases. Epidemiologic evidences have indicated the involvement of P. gingivalis in the development of cardiovascular diseases. In this study, we show that the P. gingivalis lipopolysaccharide increases the mRNA expression and protein secretion of interleukin-6 in vascular smooth muscle cells. We demonstrate that P. gingivalis LPS activates the extracellular signal-regulated kinase 1/2 (ERK1/2), p38 mitogen-activated protein kinase (MAPK), and Akt, which mediate the IL-6 expression in vascular smooth muscle cells. Also, P. gingivalis LPS stimulates the vascular smooth muscle cell migration, which is a critical step for the progression of atherosclerosis. Moreover, neutralization of the IL-6 function inhibits the migration of vascular smooth muscle cells induced by P. gingivalis LPS. Taken together, these results indicate that P. gingivalis LPS promotes the expression of IL-6, which in turn increases the migration of vascular smooth muscle cells.

Alteration of Ryanodine-receptors in Cultured Rat Aortic Smooth Muscle Cells

  • Kim, Eun-Ji;Kim, Dong-Kwan;Kim, Shin-Hye;Lee, Kyung-Moo;Park, Hyung-Seo;Kim, Se-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권6호
    • /
    • pp.431-436
    • /
    • 2011
  • Vascular smooth muscle cells can obtain a proliferative function in environments such as atherosclerosis in vivo or primary culture in vitro. Proliferation of vascular smooth muscle cells is accompanied by changes in ryanodine receptors (RyRs). In several studies, the cytosolic $Ca^{2+}$ response to caffeine is decreased during smooth muscle cell culture. Although caffeine is commonly used to investigate RyR function because it is difficult to measure $Ca^{2+}$ release from the sarcoplasmic reticulum (SR) directly, caffeine has additional off-target effects, including blocking inositol trisphosphate receptors and store-operated $Ca^{2+}$ entry. Using freshly dissociated rat aortic smooth muscle cells (RASMCs) and cultured RASMCs, we sought to provide direct evidence for the operation of RyRs through the $Ca^{2+}$- induced $Ca^{2+}$ -release pathway by directly measuring $Ca^{2+}$ release from SR in permeabilized cells. An additional goal was to elucidate alterations of RyRs that occurred during culture. Perfusion of permeabilized, freshly dissociated RASMCs with $Ca^{2+}$ stimulated $Ca^{2+}$ release from the SR. Caffeine and ryanodine also induced $Ca^{2+}$ release from the SR in dissociated RASMCs. In contrast, ryanodine, caffeine and $Ca^{2+}$ failed to trigger $Ca^{2+}$ release in cultured RASMCs. These results are consistent with results obtained by immunocytochemistry, which showed that RyRs were expressed in dissociated RASMCs, but not in cultured RASMCs. This study is the first to demonstrate $Ca^{2+}$ release from the SR by cytosolic $Ca^{2+}$ elevation in vascular smooth muscle cells, and also supports previous studies on the alterations of RyRs in vascular smooth muscle cells associated with culture.

쥐의 폐동맥 평활근 세포에서 저산소에 의한 Vascular Endothelial Growth Factor의 발현 (Hypoxia Induced Expression of Vascular Endothelial Growth Factor in Rat Pulmonary Artery Smooth Muscle Cells)

  • 노은석;김여향;현명철;이상범
    • Clinical and Experimental Pediatrics
    • /
    • 제46권2호
    • /
    • pp.167-172
    • /
    • 2003
  • 목 적 : 소아 심장병의 주종을 이루고 있는 선천성 심장병 환아들에서 폐동맥 고혈압은 비교적 흔히 발생하지만 매우 치료하기 어려운 합병증이다. 폐동맥 고혈압의 원인과 치료 및 예방에 대해서는 아직 많이 알려지지 않은 실정이므로 이의 원인을 산소결핍이라는 전형을 이용하여 VEGF란 유전인자의 차원에서 규명하고, 나아가서는 폐동맥 고혈압의 치료 및 예방책을 마련하기 위하여 이 연구를 시행하였다. 방 법 : 폐동맥 평활근 세포는 생후 6주 Fischer rat의 주폐동맥을 적출하여 작은 조각으로 잘라 20% fetal bovine serum을 첨가한 DMEM 배지를 사용하여 5% 이산화탄소 배양기에서 배양하였다. 배양된 세포는 평활근 세포에만 선택적으로 염색되는 평활근 myosin과 ${\alpha}$-actin 항체를 이용하여 염색함으로써 순수 평활근 세포임을 확인하였다. 5% 이산화탄소 배양기에서 배양한 대조군 세포와 1 또는 3% $O_2$ tension에서 배양한 실험군 세포에서의 VEGF 발현 차이와 starvation한 군과 하지 않은 군에서의 VEGF 발현 차이를 RT-PCR과 northern blotting을 이용하여 비교하였다. 결 과 : 대조군과 저산소 조건에서 배양한 실험군에서 VEGF 발현 정도는 차이가 없었다. 결 론 : 아직 국내에서는 유전인자 차원에서의 폐동맥고혈압의 원인규명이나 이에 따른 치료에 대한 연구가 전혀 없는 상태이며, 이 연구에 이어 신생쥐와 성숙쥐와의 차이점 및 나아가서 사람과 쥐의 폐동맥 평활근 세포의 차이점 등을 규명할 예정이며, 이번 연구 결과를 바탕으로 폐동맥 고혈압의 원인기전 규명, 치료 및 예방방법 개발에 기여하고자 한다.

가토 대동맥 평활근에서 인삼 알콜 추출물에 의한 Calcium 동원에 관한 연구 (A Study on the Mobilization of Calcium by Ginseng Alcohol Extract in Rabbit Vascular Smooth Muscle)

  • 김용배;이영호;강복순;강두희
    • The Korean Journal of Physiology
    • /
    • 제24권1호
    • /
    • pp.77-90
    • /
    • 1990
  • There have been conflicting reports concerning the effect of Panax ginseng on the contractility of vascular smooth muscle, i.e., Panax ginseng extract has been reported to cause relaxation, contraction or to have no effect on the tension of vascular smooth muscle. A further investigation of $Ca^{++}$ stores which supply $Ca^{++}$ for contraction of vascular smooth muscle is needed to understand the underlying mechanisms of this conflicting effect of ginseng alcohol extract (GAE). The present study was intended to examine the sources of calcium mobilized for contraction of vascular smooth muscle by GAE. Aortic ring preparations were made from the rabbit thoracic aorta and endothelial cells were removed from the ring. The contractility of the aortic ring was measured under various experimental conditions and $Ca^{++}$ flux across the membrane of aortic ring and the sarcoplasmic reticulum and mitochondria were measured with a calcium selective electrode. The result were summarized as follows; 1) At low concentration of extracellular $Ca^{++}$, GAE increased the contractility of vascular smooth muscle in dose-dependent fashion except high concentration $Ca^{++}$ (1 mM). 2) In the presence of ryanodine, GAE still increased contractility of vascular smooth muscle as much as control group, but in the presence of caffeine, GAE increased it significantly. i.e. Their effects seemed to be additive. 3) In the presence of verapamil+lanthanum, and verapamil+lanthanum+ryanodine, the contractility of the vascular smooth muscle was decreased, but a dose dependent increase in vascular tension was still demonstrated by GAE although total tension was low. 4) GAE increased $Ca^{++}$ efflux from vascular smooth muscle cells, but have no effect on $Ca^{++}$ influx. 5) GAE increased $Ca^{++}$ efflux from sarcoplasmic reticulum and mitochondria vesicles. From the above results, it may be concluded that GAE increased the release of $Ca^{++}$ from sarcoplasmic reticulum, mitochondria or other intracellular $Ca^{++}$ stores of vascular smooth muscle, but it does not increase $Ca^{++}$ influx across the plasma membrane.

  • PDF

혈관 플라그 형성 저해단백질에 대한 아연의 기능 (Role of zinc for calcification inhibitor protein in vascular smooth muscle cell plaque formation)

  • 신미영;권인숙
    • Journal of Nutrition and Health
    • /
    • 제49권1호
    • /
    • pp.59-62
    • /
    • 2016
  • Purpose: Zinc, a biomineral present within and outside cells, manages various cellular mechanisms. In this study, we examined whether zinc was involved in vascular smooth muscle cell (VSMC) calcification via regulation of calcification inhibitor protein, osteopontin (OPN). Methods: Rat aorta cell line (A7r5 cells) and primary vascular smooth muscle cells (pVSMCs) from rat aorta were cultured with phosphate (1-5 mM) and zinc ($0-15{\mu}M$) as appropriate, along with osteoblasts (MC3T3-E1) as control. The cells were then stained for Ca and P deposition for calcification examination as well as osteopontin expression as calcification inhibitor protein was measured. Results: Both Ca and phosphate deposition increased as the addition of phosphate increased. In the same manner, the expression of osteopontin was upregulated as the addition of phosphate increased in both cell types. When zinc was added, Ca and P deposition decreased in VSMCs, while it increased in osteoblasts. Conclusion: The results imply that zinc may prevent VSMC calcification by stimulating calcification inhibitor protein OPN synthesis in VSMCs.