Porphyromonas gingivalis Lipopolysaccharide Regulates Migration of Vascular Smooth Muscle Cells

  • Kim, Yeon (Department of Oral Physiology, BK21 PLUS Project, School of Dentistry, Pusan National University) ;
  • Kim, So-Jeong (Department of Oral Physiology, BK21 PLUS Project, School of Dentistry, Pusan National University) ;
  • Kim, Mi-Kyoung (Department of Oral Physiology, BK21 PLUS Project, School of Dentistry, Pusan National University) ;
  • Park, Hyun-Joo (Department of Oral Physiology, BK21 PLUS Project, School of Dentistry, Pusan National University) ;
  • Kim, Hyung Joon (Department of Oral Physiology, BK21 PLUS Project, School of Dentistry, Pusan National University) ;
  • Bae, Soo-Kyung (Department of Dental Pharmacology, BK21 PLUS Project, School of Dentistry, Pusan National University) ;
  • Bae, Moon-Kyoung (Department of Oral Physiology, BK21 PLUS Project, School of Dentistry, Pusan National University)
  • Received : 2016.11.24
  • Accepted : 2016.12.09
  • Published : 2016.12.31


Porphyromonas gingivalis, a foremost periodontal pathogen, has been known to cause periodontal diseases. Epidemiologic evidences have indicated the involvement of P. gingivalis in the development of cardiovascular diseases. In this study, we show that the P. gingivalis lipopolysaccharide increases the mRNA expression and protein secretion of interleukin-6 in vascular smooth muscle cells. We demonstrate that P. gingivalis LPS activates the extracellular signal-regulated kinase 1/2 (ERK1/2), p38 mitogen-activated protein kinase (MAPK), and Akt, which mediate the IL-6 expression in vascular smooth muscle cells. Also, P. gingivalis LPS stimulates the vascular smooth muscle cell migration, which is a critical step for the progression of atherosclerosis. Moreover, neutralization of the IL-6 function inhibits the migration of vascular smooth muscle cells induced by P. gingivalis LPS. Taken together, these results indicate that P. gingivalis LPS promotes the expression of IL-6, which in turn increases the migration of vascular smooth muscle cells.



  1. Socransky SS, Haffajee AD. The bacterial etiology of destructive periodontal disease: current concepts. J Periodontol. 1992;63:322-331. doi: 10.1902/jop.1992.63.4s.322
  2. Bainbridge BW, Darveau RP. Porphyromonas gingivalis lipopolysaccharide: an unusual pattern recognition receptor ligand for the innate host defense system. Acta Odontol Scand. 2001;59:131-138.
  3. Amar S, Han X. The impact of periodontal infection on systemic diseases. Med Sci Monit. 2003;9:RA291-299.
  4. Wada K, Kamisaki Y. Molecular dissection of Porphyromonas gingivalis-related arteriosclerosis: a novel mechanism of vascular disease. Periodontol 2000. 2010;54:222-234. doi: 10.1111/j.1600-0757.2009.00336.x.
  5. Hokamura K, Inaba H, Nakano K, Nomura R, Yoshioka H, Taniguchi K, Ooshima T, Wada K, Amano A, Umemura K. Molecular analysis of aortic intimal hyperplasia caused by Porphyromonas gingivalis infection in mice with endothelial damage. J Periodontal Res. 2010;45:337-344. doi: 10.1111/j.1600-0765.2009.01242.x.
  6. Kim SR, Park HJ, Bae SK, Park JH, Kim HS, Koo TH, Bae MK. Porphyromonas gingivalis lipopolysaccharide increases monocyte adhesion to microvascular endothelium by induction of adhesion molecules. Int J Oral Biol. 2008;33:149-154.
  7. Owens GK. Molecular control of vascular smooth muscle cell differentiation and phenotypic plasticity. Novartis Found Symp. 2007;283:174-191.
  8. Bennett MR, Sinha S, Owens GK. Vascular Smooth Muscle Cells in Atherosclerosis. Circ Res. 2016;118:692-702. doi: 10.1161/CIRCRESAHA.115.306361.
  9. Chistiakov DA, Orekhov AN, Bobryshev YV. Vascular smooth muscle cell in atherosclerosis. Acta Physiol (Oxf). 2015;214:33-50. doi: 10.1111/apha.12466
  10. Wang Z, Newman WH. Smooth muscle cell migration stimulated by interleukin 6 is associated with cytoskeletal reorganization. J Surg Res. 2003;111:261-266.
  11. Chava KR, Karpurapu M, Wang D, Bhanoori M, Kundumani-Sridharan V, Zhang Q, Ichiki T, Glasgow WC, Rao GN. CREB-mediated IL-6 expression is required for 15(S)-hydroxyeicosatetraenoic acid-induced vascular smooth muscle cell migration. Arterioscler Thromb Vasc Biol. 2009;29:809-815. doi: 10.1161/ATVBAHA.109.185777
  12. Park YD, Kim YS, Jung YM, Lee SI, Lee YM, Bang JB, Kim EC. Porphyromonas gingivalis lipopolysaccharide regulates interleukin (IL)-17 and IL-23 expression via SIRT1 modulation in human periodontal ligament cells. Cytokine. 2012;60:284-293. doi: 11.1016/j.cyto.2012.05.021.
  13. Li X, Kolltveit KM, Tronstad L, Olsen I. Systemic diseases caused by oral infection. Clin Microbiol Rev. 2000;13:547-558.
  14. Hayashi C, Gudino CV, Gibson FC,3rd, Genco CA. Review: Pathogen-induced inflammation at sites distant from oral infection: bacterial persistence and induction of cell-specific innate immune inflammatory pathways. Mol Oral Microbiol. 2010;25:305-316. doi: 10.1111/j.2041-1014.2010.00582.x
  15. Lalla E, Lamster IB, Hofmann MA, Bucciarelli L, Jerud AP, Tucker S, Lu Y, Papapanou PN, Schmidt AM. Oral infection with a periodontal pathogen accelerates early atherosclerosis in apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol. 2003;23:1405-1411. doi: 10.1161/01.ATV.0000082462.26258.FE
  16. Libby P. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32:2045-2051. doi: 10.1161/ATVBAHA.108.179705
  17. Aarabi G, Eberhard J, Reissmann DR, Heydecke G, Seedorf U. Interaction between periodontal disease and atherosclerotic vascular disease-Fact or fiction? Atherosclerosis. 2015;241:555-560. doi: 10.1016/j.atherosclerosis.2015.04.819
  18. Qi M, Miyakawa H, Kuramitsu HK. Porphyromonas gingivalis induces murine macrophage foam cell formation. Microb Pathog. 2003;35:259-267.
  19. Inaba H, Hokamura K, Nakano K, Nomura R, Katayama K, Nakajima A, Yoshioka H, Taniguchi K, Kamisaki Y, Ooshima T, Umemura K, Murad F, Wada K, Amano A. Upregulation of S100 calcium-binding protein A9 is required for induction of smooth muscle cell proliferation by a periodontal pathogen. FEBS Lett. 2009;583:128-134. doi: 10.1016/j.febslet.2008.11.036
  20. Nishimoto N, Kishimoto T. Interleukin 6: from bench to bedside. Nat Clin Pract Rheumatol. 2006;2:619-626. doi: 10.1038/ncprheum0338.
  21. Lee GL, Wu JY, Tsai CS, Lin CY, Tsai YT, Lin CS, Wang YF, Yet SF, Hsu YJ, Kuo CC. TLR4-Activated MAPK-IL-6 Axis Regulates Vascular Smooth Muscle Cell Function. Int J Mol Sci. 2016;17:E1394. doi: 10.3390/ijms17091394
  22. Lee GL, Chang YW, Wu JY, Wu ML, Wu KK, Yet SF, Kuo CC. TLR 2 induces vascular smooth muscle cell migration through cAMP response element-binding protein-mediated interleukin-6 production. Arterioscler Thromb Vasc Biol. 2012;32:2751-2760. doi: 10.1161/ATVBAHA.112.300302
  23. Taga T, Hibi M, Hirata Y, Yamasaki K, Yasukawa K, Matsuda T, Hirano T, Kishimoto T. Interleukin-6 triggers the association of its receptor with a possible signal transducer, gp130. Cell. 1989;58:573-581.
  24. Rose-John S. IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. Int J Biol Sci. 2012;8:1237-1247. doi: 10.7150/ijbs.4989
  25. Schaper F, Rose-John S. Interleukin-6: Biology, signaling and strategies of blockade. Cytokine Growth Factor Rev. 2015;26:475-487. doi: 10.1016/j.cytogfr.2015.07.004
  26. Tanaka T, Kishimoto T. The biology and medical implications of interleukin-6. Cancer Immunol Res. 2014;2:288-294. doi: 10.1158/2326-6066.CIR-14-0022
  27. Jones SA, Scheller J, Rose-John S. Therapeutic strategies for the clinical blockade of IL-6/gp130 signaling. J Clin Invest. 2011;121:3375-3383. doi: 10.1172/JCI57158