• Title/Summary/Keyword: Varus and Valgus moment

Search Result 10, Processing Time 0.023 seconds

Biomechanical Evaluation of Elbow Moment in Pitching Types according to the Throwing Speed: A Pilot Study

  • Lee, Chang-Hyung;Yang, Jin-Hwan;Lee, Seung-Hoo;Lee, Gyu-Chang;Park, Jong-Chul
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • Objective: The incidence rate of elbow ulnar collateral ligament injuries is dependent on the throwing speed or pitching type, especially in adolescent baseball players. However, mixed results have been reported due to a lack of controlled biomechanical analysis. Thus, the purpose of this study was to investigate the biomechanical analysis of the elbow in relation to throwing speed and pitching type. Method: Four overhead type high-school baseball players were recruited for this study. The participants were asked to throw balls with different types of pitch and speed. While the throwing speeds were measured, each pitching moment of the elbow was recorded. Descriptive statistics, frequency analysis, mean comparison analysis, and Pearson's correlation analysis were performed in order to examine differences in peak varus and valgus moment during pitching motion in the elbow in all throwing speed and pitching types. Results: There was no significant difference in physical characteristics, throwing speed, and momentum variability among all players. The mean varus moments were 44.38±1.55 Nm, 48.83±1.66 Nm, and 48.94±0.95 Nm, and the moment gaps between varus and valgus were 7.36±3.25 Nm, 7.44±2.02 Nm, and 7.36±2.62 Nm in fastball, curveball, and slider ball, respectively. The varus moment was higher in the curved and slider balls than in the fastballs, and there was no significant differences between the varus moments regarding the pitching type. However, the increase in valgus moment and decrease in moment gap according to throwing speed was significantly increased in the slider ball (r=0.718 and -0.591, respectively). Conclusion: The possibility of elbow injury caused by the valgus moment or moment gapincreases more rapidly in slider balls as the speed increases. Based on our results, appropriate pitching guidelines should be suggested to prevent ulnarligament injuries, especially in adolescent baseball players.

The Changes of Joint Moments According to Weight Loading Gait on Normal Adults (정상 성인의 무게 부하 보행이 관절 모멘트의 변화에 미치는 영향)

  • Chung, Hyung-Kuk
    • Journal of Korean Physical Therapy Science
    • /
    • v.10 no.2
    • /
    • pp.53-61
    • /
    • 2003
  • The purposes of this study were to describe and compare pint moments according to 6 types of gait methods during free speed. 15 volunteers(7 male, 8 female: mean age = 23.33 yrs.) participated and performed 6 types of gait methods. From the 3 types of pint moments of lower extremities(hip, knee, ankle and foot), the following results were made: 1. In left hip pint, the flexion-extension moment was not significantly different, but the adduction-abduction moment and rotation moment were showed different curves during stance phase. 2. In left knee pint, the flexion-extension moment was not significantly different, but the varus-valgus moment and rotation moment were showed different curves during stance phase. 3. In left ankle and foot the dorsiflexion-plantarflexion moment was not significantly different but the varus-valgus moment and rotation moment were showed different curves during stance phase. In conclusion, because weight loading gait with 10-20% of body weight were normal gait patterns, It was inferred that all weight loading gaits did not indicate noxious reactions of human body.

  • PDF

A Review of Effects of Osteoarthritic Patient with a Varus Deformity of the Knee on Laterally Wedged Insole (외측 쐐기 깔창이 골관절염 환자의 내반슬에 미치는 영향에 관한 고찰)

  • Lee, Sang-Yong;Shin, Hyung-Soo;Bae, Sung-Soo
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.11 no.1
    • /
    • pp.65-73
    • /
    • 2005
  • Osteoarthritis has been considered a disease of the elderly because it is uncommon before the age of 40 years and is seen in approximately 80% of United States citizens older than 65 years. general population on kuri city in korea revealed that prevalence of knee osteoarthritis is 10.2%, increasing with age. High level of physical activity in men and age, post-menopause and obesity in women can be risk factor. Osteoarthritis is no evidence that a acquired process initiated much earlier in life through mechanical, metabolic, genetic, or other origins. A high tibial osteotomy alters static lower extremity alignment thereby decreasing medial compartment loading. As well, conservative treatment strategies, such as knee braces and valgus heel wedges, affect lover limb mechanics and attempt to reduce medial compartment loading. It was hypothesized that valgus heel wedges and modified orthoses would shift the center of pressure laterally on the foot during level walking, reducing the moment arm of the adduction moment in the frontal plane, thereby resulting in a decrease in the knee adduction moment. In the 1980s, the effect of wearing a laterally wedged insole on osteoarthritic patients with a varus deformity of the knee was firsted, and since then, kinematic and kinetic analyses concerning this condition have mainly focused on a static standing position. Since the early 1990s, the beneficial effect of wearing a laterally wedged insole to treat osteoarthritis of the knee has also been reported in dynamic conditions, but these studies did not answer the question of the kinematic and kinetic mechanisms that resulted in the reduced symptoms in patents with knee osteoarthritis. therefore, the effect of wearing laterally wedged insole has not been sufficiently studied.

  • PDF

The Effect of Total Contact Inserts on the Gait Parameters During High-Heeled Shoes Walking (높은 굽 신발 보행 시 전면 접촉인솔이 보행 변수에 미치는 영향)

  • Moon, Gon-Sung;Kim, Tack-Hoon
    • Physical Therapy Korea
    • /
    • v.18 no.2
    • /
    • pp.1-8
    • /
    • 2011
  • The purpose of this study was to investigate the effect of high heeled shoes with the total contact insert (TCI) on the frontal plane of the joints for the lower extremity during the gait. Ten healthy females voluntarily participated in this study and the height of the high heeled shoes was 7 cm. A three-dimensional motion analysis system (VICON) and force plates were used to analyze the movements of the joints for the lower extremities. The results were as follows: There were no significant differences for the angle value on the event of the gait cycle in the maximum eversion and inversion of the ankle joint, the varus and valgus of the knee joint, and the adduction and abduction of the hip joint (p>.05). But, there was a significant difference or the range of motion in the ankle joint (p<.05). The value of ankle and knee moment with a TCI was less than the value for no TCI. And there were significant differences for the moment value of the maximum inversion and eversion on the ankle joint and for the maximum varus and valgus on the knee joint (p<.05). Therefore, a TCI would be effective in stabilizing the joints of the lower extremities and increasing the balance of a body to reduce the injure from a fall during the gait.

The Effects of Landing Height and Distance on Knee Injury Mechanism (착지의 높이와 거리가 무릎 부상 메카니즘에 미치는 영향)

  • Cho, Joon-Haeng;Kim, Ro-Bin
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.2
    • /
    • pp.197-205
    • /
    • 2011
  • Various jumping and landing motions are shown during sports event. But most previous studies have not considered landing height and distance simultaneously. The purpose of this study was to identify the effects of landing height and distance on knee injury mechanism. Fourteen male(age: $28.86{\pm}1.99$ yrs, height: $177.00{\pm}4.69$ cm, weight: $76.50{\pm}6.41$ kg) participated in this study. The subjects attempted drop landing task onto the ground from 30 cm to 45 cm heights and to 20 cm to 40 cm distances. The results were as follows. First, higher drop landing height and longer distance showed greater degree of maximal knee flexion and valgus. Second, higher drop landing height and longer distance showed greater maximal knee extension moment and varus moment. Third, higher drop landing height and longer distance showed larger maximal knee absorption power. Lastly, higher drop landing height showed increased Peak GRF. Landing height was more related to the cause of injury, which was indicated by increased maximal knee extension moment, peak GRF and maximal knee absorption power. Landing distance was also associated with increased knee valgus moment and absorption power during landing. These results suggest that landing height and distance may be the cause of injury.

Analysis of Biomechanical Changes According to Mechanical Alignment of the Lower Limbs when Gait with a Material Handling (중량물 취급 보행 시 하지의 역학적 정렬에 따른 생체역학적 변화 분석)

  • Lee, Kyung-Ill;Lee, Chul-Gab;Song, Han-Soo;Hong, Wan-Ki
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.2
    • /
    • pp.183-190
    • /
    • 2015
  • Objective : Walking with a Material handling is an activity frequently undertaken by agricultural workers in Korea, due to the nature of their work. This study aimed to investigate differences in biomechanical variables according to the mechanical alignment of the lower limbs when walking with a heavy load, and to use this as basic data in the design of various working environments to reduce the skeletomuscular burden on the knee joint. Method : The study subjects comprised of 22 right-foot dominant adult men and women aged between 20 and 23 years. The subjects were divided into a varus or valgus group according to the mechanical alignment of the lower limb by using radiographic findings. The subjects walked without any load and with a load of 10%, 20%, or 30% of their body weight held in front of them. The Kwon3d XP program was used to calculate biomechanical variables. Results : The flexion/extension moment of the knee joint showed a decreasing trend with increased load, irrespective of the mechanical alignment of the lower limb, while the varus group did not show normal compensatory action when supported by one leg at the point of maximum vertical ground reaction force. In addition, in terms of the time taken, subjects showed no difficulties in one-foot support time up to 20%/BW, but at 30%/BW, despite individual differences, there was an increase in single limb. The increased load resulted in a decrease in the ratio of standing phase to ensure physical stability. The valgus group showed a trend of increasing the stability of their center of mass with increasing load, through higher braking power in the early standing phase. Conclusion : In conclusion, although there was no statistical difference in biomechanical variables according to the mechanical alignment of the lower limbs, the varus group showed a more irregular walking pattern with a Material handling than the valgus group, partially proving the association between lower limb alignment and walking with a Material handling.

Effects of Contralateral and Ipsilateral Cane Use on Knee Moment (동측과 반대편의 지팡이 사용에 대한 무릎의 모멘트 분석)

  • Lee, Hyun-Ok;Yang, Kyung-Hye;Kwon, Yu-Jeong
    • The Journal of Korean Physical Therapy
    • /
    • v.26 no.2
    • /
    • pp.117-122
    • /
    • 2014
  • Purpose: The purpose of this study was to compare the effects of force of ipsilateral versus contralateral cane usage on knee moments in healthy young adults. Methods: A convenience sample of 10 subjects volunteered for this study. Subjects walked over a force plate under three different conditions; unaided and ipsilateral cane and contralateral cane. Analysis of data on moment of the knee joint and ground reaction force was performed using the OrthoTrak program. Results: Flexion moment of the knee was decreased with the contralateral cane, but increased with the ipsilateral cane compared with normal gait. Extension moment of the knee was decreased with the contralateral cane compared with normal gait(p<0.05) and it was showed a greater decrease with the contralateral cane than with the ipsilateral cane gait(p=0.00). Valgus moment of the knee joint was increased with the ipsilateral cane but decreased with the contralateral cane. Vertical ground peak force was decreased with the ipsilateral cane compared with normal gait (p<0.05). Conclusion: The following conclusions were drawn from our data. Contralateral cane gait is more efficacious for persons with weakness of knee extensors, however, for a patient with varus deformity, the cane should be used in the ipsilateral hand.

Effect of Sports Taping on Impact Forces and Muscle Tuning during Drop Landing (드롭 착지 시 스포츠 테이핑이 하지의 충격력과 근육 조율에 미치는 영향)

  • Kang, Nyeon-Ju;Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.175-182
    • /
    • 2010
  • The purpose of this study was to evaluate the biomechanical effect of sports taping on the lower limb during drop landing. Twelve male university students who have no musculoskeletal disorder were recruited as the subjects. Principal strain, median frequency, vertical GRF, loading rate, angular velocity and resultant joint moment were determined for each trial. For each dependent variable, paired t-test was performed to test if significant difference existed between taped and untaped conditions(p<.05). The results showed that principal strain of the thigh and the shank in taping group were significantly less than those found in control group. These indicated that sports taping may prevent excessive mechanical strain caused by impact force during the deceleration phase. Flexion(-)-extension(+) and varus(-)-valgus(+) resultant joint moment of the knee joint in taping group were greater than corresponding value for control group. It seems that extensor muscle of the knee joint were not only supported by sports taping during knee flexion but also sports taping is effective for minimizing the possibility of injury.

Effects of Landing Foot Orientations on Biomechanics of Knee Joint in Single-legged Landing

  • Joo, Ji-Yong;Kim, Young-Kwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.2
    • /
    • pp.143-149
    • /
    • 2018
  • Objective: This study aimed to investigate the influence of landing foot orientations on biomechanics of knee joint in order to identify vulnerable positions to non-contact knee injuries during single-legged landing. Method: Seventeen men (age: $20.5{\pm}1.1 years$, height: $175.2{\pm}6.4cm$, weight: $68.8{\pm}5.8kg$) performed single-leg drop landings repeatedly with three different landing foot orientations. They were defined as toe-in (TI) $30^{\circ}$ adduction, neutral (N, neutral), and toe-out (TO) $30^{\circ}$ abduction positions. Results: The downward phase time of TI was significantly shorter than those of N and TO. The flexion and valgus angle of N was greater than those of TI and TO at the moment of foot contact. At the instance of maximum knee flexion, N showed the largest flexion angle, and TO position had the largest varus and external rotation angles. Regarding ground reaction force (GRF) at the moment of foot contact, TO showed the forward GRF, while others showed the backward GRF. TI indicated significantly larger mediolateral GRF than others. As for the maximum knee joint force and joint moment, the main effect of different foot positions was not significant. Conclusion: TI and TO might be vulnerable positions to knee injuries because both conditions might induce combined loadings to knee joint. TI had the highest mediolateral GRF with a shortest foot contact time, and TO had induced a large external rotation angle during downward phase and the peak forward GRF at the moment of foot contact. Conclusively, N is the preferred landing foot orientation to prevent non-contact knee injuries.

KNEE: Basic Science and Injury of Bone (슬관절 주위 글격의 기초과학 및 스포츠 손상)

  • Kim Hee-Chun
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.2 no.2
    • /
    • pp.77-81
    • /
    • 2003
  • Purpose: The biomechanics and kinematics of knee joint were reviewed in this article. And then the common sports injuries were presented. Anatomy and Kinetics: None of the pairs of bearing surfaces in the knee joint is exactly congruent This allows the knee six degrees of freedom of motion. Tibiofemoral Kinematics: In flexion and extension, the axis of motion is not perpendicular to the medial-lateral plane of the joint, nor is it perpendicular to the axis of longitudinal rotation. This results in coupled varus angulation and internal rotation with flexion and in valgus angulation and external rotation with extension. Patellofemoral Articulation: Loads across the patellofemoral joint are indirectly related to the angle of knee flexion and directly related to the force generated within the quadriceps mechanism. Fractures of the Patella: Nonoperative treatment is indicated if the extensor mechanism is intact and if displacement of fragment is minimal. The specific type of internal fixation depends on the fracture pattern. It is important to repair retinaculum. Acute and Recurrent Patellar Instability: The degree of dysplasia and the extent of the instability play a large part in determining the success of nonoperative treatment. Patients who experience recurrent dislocations and patients with major anatomic variations require surgery to minimize their instability. Sports Injuries in School-age Atheletes: Patellar pain in young athletes groups a number of conditions, including Idiopathic Adolescent Anterior Knee Pain, Osgood- Schlatter Disease, and Sinding-Larsen-Johansson Disease.

  • PDF