• Title/Summary/Keyword: Variable-stiffness

Search Result 327, Processing Time 0.023 seconds

Dynamic Behavior Analysis of Reciprocating Compressor Frame with Variable Rotating Speed (가변속 왕복동형 압축기 본체의 동적 거동 해석)

  • 김태종;이상민;박찬수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.362-367
    • /
    • 2001
  • A reciprocating compressor unit with variable rotating speed driven by BLDC motor is mounted inside hermetic chamber on an internal suspension composed of 4 coil springs and a discharge pipe. A method for predicting the dynamic behavior of compressor frame is required to reduce the transmitted vibration level. Mechanical characteristics such as mass, spring and discharge pipe stiffness properties are obtained with experimentation. To confirm the vibration model for compressor frame, free vibration analyses are performed with theoretical and experimental methods. Results for analytical and experimental investigations on dynamic behavior of the compressor frame are presented, and the agreement between measured and predicted results are satisfactory.

  • PDF

Investigation of natural frequencies of multi-bay and multi-storey frames using a single variable shear deformation theory

  • Bozyigit, Baran;Yesilce, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.9-17
    • /
    • 2018
  • This study concerns about calculating exact natural frequencies of frames using a single variable shear deformation theory (SVSDT) which considers the parabolic shear stress distribution across the cross section. Free vibration analyses are performed for multi-bay, multi-storey and multi-bay multi-storey type frame structures. Dynamic stiffness formulations are derived and used to obtain first five natural frequencies of frames. Different beam and column cross sections are considered to reveal their effects on free vibration analysis. The calculated natural frequencies are tabulated with the results obtained using Euler-Bernoulli Beam Theory (EBT) and Timoshenko Beam Theory (TBT). Moreover, the effects of inner and outer columns on natural frequencies are compared for multi-bay frames. Several mode shapes are plotted.

Dynamic Properties of Squeeze Type Mount Using MR Fluid (MR유체를 이용한 스퀴즈모드형 마운트의 동특성)

  • 하종용;안영공;양보석;정석권;김동조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.374-378
    • /
    • 2003
  • This paper presents investigation of damping characteristics of squeeze mode type MR (Magneto-Rheological) mount experimentally. Since damping property of the MR fluid is changed by variation of the applied magnetic field strength, squeeze mode type MR mount proposed in the study has variable damping characteristics according to the applied magnetic field s strength. In the present work, the performance of the mount was experimentally investigated according to the magnetic field strength and exciting frequencies. The experimental results present that the MR mount can effectively reduce the vibration in a wide range of frequency by controlling the applied electromagnetic filed strength. Viscous damping and stiffness coefficients of the MR mount tend to be changed according to the variation of the applied currents in this study and MR effect is reduced by increasing exciting frequency.

  • PDF

Dynamic Properties of Squeeze Type Mount Using MR Fluid (MR 유체를 이용한 스퀴즈모드형 마운트의 동특성)

  • 안영공
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.6
    • /
    • pp.490-495
    • /
    • 2003
  • This paper presents investigation of damping characteristics of squeeze mode type MR (magneto-rheological) mount experimentally. Since damping property of the MR fluid is changed by variation of the applied magnetic field strength, squeeze mode type MR mount proposed in the study has variable damping characteristics according to the applied magnetic field strength. In the present work, the performance of the mount was experimentally Investigated according to the magnetic field strength and exciting frequencies. The experimental results present that the MR mount can effectively reduce the vibration in a wide range of frequency by controlling the applied electromagnetic field strength. Viscous damping and stiffness coefficients of the MR mount tend to be changed according to the variation of the applied currents in this study and MR effect is reduced by increasing exciting frequency.

Seismic performance of composite plate shear walls with variable column flexural stiffness

  • Curkovic, Ivan;Skejic, Davor;Dzeba, Ivica;De Matteis, Gianfranco
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.19-36
    • /
    • 2019
  • Cyclic behaviour of composite (steel-concrete) plate shear walls (CPSW) with variable column flexural stiffness is experimentally and numerically investigated. The investigation included design, fabrication and testing of three pairs of one-bay one-storey CPSW specimens. The reference specimen pair was designed in way that its column flexural stiffness corresponds to the value required by the design codes, while within the other two specimen pairs column flexural stiffness was reduced by 18% and 36%, respectively. Specimens were subjected to quasi-static cyclic tests. Obtained results indicate that column flexural stiffness reduction in CPSW does not have negative impact on the overall behaviour allowing for satisfactory performance for up to 4% storey drift ratio while also enabling inelastic buckling of the infill steel plate. Additionally, in comparison to similar steel plate shear wall (SPSW) specimens, column "pull-in" deformations are less pronounced within CPSW specimens. Therefore, the results indicate that prescribed minimal column flexural stiffness value used for CPSW might be conservative, and can additionally be reduced when compared to the prescribed value for SPSWs. Furthermore, finite element (FE) pushover simulations were conducted using shell and solid elements. Such FE models can adequately simulate cyclic behaviour of CPSW and as such could be further used for numerical parametric analyses. It is necessary to mention that the implemented pushover FE models were not able to adequately reproduce column "pull-in" deformation and that further development of FE simulations is required where cyclic loading of the shear walls needs to be simulated.

Postcracking Torsional Stiffness of Reinforced Concrete Beams under Pure Torsion (순수비틀림을 받는 철근콘크리트 보의 균열후 비틀림 강성)

  • 음성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.51-58
    • /
    • 1991
  • In staically indeterminate structures torsional stiffness is an important factor for prediction of mechanical behavior at all loading stages in reinfored concrete beams, which also for calculation of torsional moment. This paper proposes equation for postcracking torsional stiffness of reinforced concrete beams under pure torsion, which is derived considering the equilibrium and compatibility condition for shear panel based on the variable angle space truss model. The equation describes well the effect according to the variation of aspect ratio and steel volume ratio per unit concrete volume. It agress with experimental results in this paper as well as available literature.

  • PDF

Establishment of Design Variable of Leg Stiffness Artificial Tendon Actuator ($LeSATA^{TM}$) for Actual Control in Dorsiflexion of Metatarsophalangeal Joint at the Initial Contact while the Bi-pedal Human Walking : (1) Realization of Lagrangian Equation and Impulsive Constraint (2족 보행시 중족지절관절 초기접지기 배측굴곡의 능동적 통제를 위한 Leg Stiffness Artificial Tendon Actuator($LeSATA^{TM}$)의 설계변수 확립 : (1) Lagrangian 방정식 및 Impulsive Constraint 적용법 구현)

  • Kim, Cheol-Woong;Han, Gi-Bong;Eo, Eun-Kyoung
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2010.11a
    • /
    • pp.651-652
    • /
    • 2010
  • PDF

Analysis of rotational end restraint for cross-beams of railway through truss bridges

  • Siekierski, Wojciech
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.29-41
    • /
    • 2020
  • Cross-beams of modern through truss bridges are connected to truss chord at its nodes and between them. It results in variable rotational end restraint for cross-beams, thus variable bending moment distribution. This feature is captured in three-dimensional modelling of through truss bridge structure. However, for preliminary design or rapid assessment of service load effects such technique of analysis may not be available. So an analytical method of assessment of rotational end restraint for cross-beam of through truss bridges was worked out. Two cases - nodal cross-beam and inter-nodal cross-beam - were analyzed. Flexural and torsional stiffness of truss members, flexural stiffness of deck members and axial stiffness of wind bracing members in the vicinity of the analyzed cross-beam were taken into account. The provision for reduced stiffness of the X-type wind bracing was made. Finally, general formula for assessment of rotational end restraint was given. Rotational end restraints for cross-beams of three railway through truss bridges were assessed basing on the analytical method and the finite element method (three-dimensional beam-element modelling). Results of both methods show good agreement. The analytical method is able to reflect effects of some structural irregularities. On the basis of the obtained results the general values of rotational end restraint for nodal and inter-nodal cross-beams of railway through truss bridges were suggested.

Prediction of Natural Frequency via Change in Design Variable on Connection Area of Lap Joint (겹치기 이음부의 설계변수 변화에 따른 고유진동수의 예측)

  • Yun, Seong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.57-62
    • /
    • 2019
  • This paper describes the prediction of eigenfrequencies due to changes in stiffness and mass in the connection area of the lap joint beam in terms of linear and torsional stiffness as well as connection length. The sensitivities of mass and stiffness in the finite element model were derived by using the first-order differential and algebraic equation and were thereafter applied to obtain new natural frequencies that were compared with theoretical exact solutions. Newly predicted natural frequencies due to only a change in stiffness were in relatively good agreement with those in lower modes for rigid joints, while further investigation was needed for flexible joints. On the other hand, only the change in mass resulted in a large discrepancy in the flexible joint case. It may be strongly anticipated that this study will provide a useful tool for estimating modal parameters by change in any design variable, such as the structural dimension, material property, or connection type for a large-scale structure, even though the proposed methodology is currently limited to a jointed beam.

Torsional Vibration Analysis of a Spur Gear Pair with the Variable Mesh Stiffness (기어이의 변동물림강성을 고려한 비틀림진동해석)

  • Ryu, Jae-Wan;Han, Dong-Chul;Choi, Sang-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.99-108
    • /
    • 1999
  • A four-degree-of-freedom non-linear model with time varying mesh stiffness has been developed for the dynamic analysis of spur gear trains. The model includes a spur gear pair, two shafts, two inertias representing load and prime mover. In the model, developed several factors such as time varying mesh stiffness and damping, separation of teeth, teeth collision, various gear errors and profile modifications have been considered. Two computer programs are developed to calculate stiffness of a gear pair and transmission error and the dynamic analysis of modeled system using time integration method. Dynamic tooth and mesh forces, dynamic factors are calculated. Numerical examples have been given, which shows the time varying mesh stiffness ha a significant effect upon the dynamic tooth force and torsional vibrations.

  • PDF