• Title/Summary/Keyword: Variable speed motor

Search Result 490, Processing Time 0.028 seconds

An Improved Flux Observer for Sensorless Permanent Magnet Synchronous Motor Drives with Parameter Identification

  • Lin, Hai;Hwang, Kyu-Yun;Kwon, Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.516-523
    • /
    • 2013
  • This paper investigates an improved stator flux linkage observer for sensorless permanent magnet synchronous motor (PMSM) drives using a voltage-based flux linkage model and an adaptive sliding mode variable structure. We propose a new observer design that employs an improved sliding mode reaching law to achieve better estimation accuracy. The design includes two models and two adaptive estimating laws, and we illustrate that the design is stable using the Popov hyper-stability theory. Simulation and experimental results demonstrate that the proposed estimator accurately calculates the speed, the stator flux linkage, and the resistance while overcoming the shortcomings of traditional estimators.

Parameter Identification of Induction Motors using Variable-weighted Cost Function of Genetic Algorithms

  • Megherbi, A.C.;Megherbi, H.;Benmahamed, K.;Aissaoui, A.G.;Tahour, A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.597-605
    • /
    • 2010
  • This paper presents a contribution to parameter identification of a non-linear system using a new strategy to improve the genetic algorithm (GA) method. Since cost function plays an important role in GA-based parameter identification, we propose to improve the simple version of GA, where weights of the cost function are not taken as constant values, but varying along the procedure of parameter identification. This modified version of GA is applied to the induction motor (IM) as an example of nonlinear system. The GA cost function is the weighted sum of stator current and rotor speed errors between the plant and the model of induction motor. Simulation results show that the identification method based on improved GA is feasible and gives high precision.

Design of Neuro-Fuzzy Controller for Speed Control Applied to DC Servo Motor (직류시보전동기의 속도제어를 위한 뉴로-퍼지 제어기 설계)

  • Kim, Sang-Hoon;Kang, Young-Ho;Ko, Bong-Woon;Kim, Lark-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.2
    • /
    • pp.48-54
    • /
    • 2002
  • In this study, a neuro-fuzzy controller which has the characteristic of fuzzy control and artificial neural network is designed. A fuzzy rule to be applied is automatically selected by the allocated neurons. The neurons correspond to fuzzy rules are created by an expert. To adapt the more precise model is implemented by error back-propagation learning algorithm to adjust the link-weight of fuzzy membership function in the neuro-fuzzy controller. The more classified fuzzy rule is used to include the property of dual mode method. In order to verify the effectiveness of the proposed algorithm designed above, an operating characteristic of a DC servo motor with variable load is investigated.

A Gear Changing Techniques of Inverter for Variable Speed Drives on Traction Motor (견인용 전동기의 가변속 운전을 위한 인버터의 PWM패턴 절환 기법)

  • Seo, Young-Min;Jang, Dong-Ryul;Park, Hae-Dong;Hong, Soon-Chan;Park, Young-Jeen;Song, Joong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1947-1950
    • /
    • 1998
  • GTO inverter used for traction motor drives includes harmonics in the output current and torque by the limitation of switching frequency. However, the hybrid PWM method, using SPWM in low frequency range and SHE PWM in upper frequency range, can be obtained the relative less harmonic characteristic. The transient reaction, which the magnetic flux and the torque is altered and instantly the large current is flowed, may be produced at the mode change. This paper presents the techniques which can reduce the transient reactions produced in the gear changing of inverter fed traction motor drives operating in the hybrid PWM. The results are verified by the simulations.

  • PDF

Design and implementation of thyristor chopper circuit for D.C series motor control (직류 직권 전동기 제어를 위한 싸이리스터 쵸퍼회러의 설계및 시작)

  • 이윤종;백수현;이성백
    • 전기의세계
    • /
    • v.28 no.9
    • /
    • pp.51-59
    • /
    • 1979
  • The forming and design method of D.C thyristor chopper circuit for DC Series motor control is suggested, ard the computation method of thyristor commutaing element's, value which makes it all the more important, is possible. Also the trigger circuit was dealt with. In this paper, in order to control the duty cycle, the duty time is kept on constancy and variable chopping frequency was adopted. By above mentioned circuit design method, the D.C thyristor chopper circuit was implemented and tested. In this circuit, the result of D.C motor control was good and reliable. The relation between the $K_{d}$ and the ratio of input-output current, or the characteristic of speed was varied lineary at the range 0.1 ~ 0.9 of duty cycle. This confirms the fact that D.C to D.C power conversion which is the merit of chopper control is operated most likely a transformer.ormer.

  • PDF

Networked Intelligent Motor-Control Systems Using LonWorks Fieldbus

  • Hong, Won-Pyo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.365-370
    • /
    • 2004
  • The integration of intelligent devices, devices-level networks, and software into motor control systems can deliver improved diagnostics, fast warnings for increased system reliability, design flexibility, and simplified wiring. Remote access to motor-control information also affords an opportunity for reduced exposure to hazardous voltage and improved personnel safety during startup and trouble-shooting. This paper presents LonWorks fieldbus networked intelligent induction control system architecture. Experimental bed system with two inverter motor driving system for controlling 1.5kW induction motor is configured for LonWorks networked intelligent motor control. In recent years, MCCs have evolved to include component technologies, such as variable-speed drives, solid-state starters, and electronic overload relays. Integration was accomplished through hardwiring to a programmable logic controller (PLC) or distributed control system (DCS). Devicelevel communication networks brought new possibilities for advanced monitoring, control and diagnostics. This LonWorks network offered the opportunity for greatly simplified wiring, eliminating the bundles of control interwiring and corresponding complex interwiring diagrams. An intelligent MCC connected in device level control network proves users with significant new information for preventing or minimizing downtime. This information includes warnings of abnormal operation, identification of trip causes, automated logging of events, and electronic documentation. In order to show the application of the multi-motors control system, the prototype control system is implemented. This paper is the first step to drive multi-motors with serial communication which can satisfy the real time operation using LonWorks network.

  • PDF

Conceptual Design of a 10 HP Homopolar Motor with Superconducting Windings

  • Park, Sang-Ho;Kim, Yun-Gil;Lee, Se-Yeon;Choi, Kyeong-Dal;Hahn, Song-Yop;Lee, Ji-Kwang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.2
    • /
    • pp.9-12
    • /
    • 2011
  • Superconducting motor has a lot of benefits from high power density for ship propulsions, so a number of research project are in progress worldwide. Despite of all the benefits, there is always a difficulty of cryo-moving part for conventional air-core superconducting synchronous motors. In order to get rid of this moving cryogenic part, we propose a homopolar superconducting synchronous motor, which has high temperature superconducting armature and field coils. The rotor is supposed to be made of iron only and excited by the stationary HTS field coils. The stationary field coils make the cooling system simple and easy to realize because there is no cryo-moving part. A design result of a 10 hp homopolar synchronous motor is presented in this paper. The self and mutual inductance of the motor having the size of air gap as variable parameter are calculated by a 3-dimemsional finite element method. The value of design variables such as the dimension of a motor and the number of turns, etc. is decided by performing the coordinate transformation of the calculated inductance. The operating frequency is supposed to be below 5 Hz for low rotating speed which is needed for a purpose of ship propulsion. Low frequency also has the benefit of low AC losses.

Analysis of Speed Ripple Reduction Methods for Permanent Magnet Synchronous Motor with Eccentric-weight Load (편심 무게 부하를 갖는 영구자석 동기 전동기의 속도리플 저감기법 분석)

  • 박정우;김종무;이기욱
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.3
    • /
    • pp.164-172
    • /
    • 2004
  • This paper presents the comparison results of some kinds of control method in circumstance of eccentric load. The plant to be controlled is a computed tomography(CT) driven by a permanent magnet synchronous motor. In a CT system, many units are attached on the rotationally part of a gantry such as x-ray tube, detector, heat exchanger, and data acquisition unit etc. Therefore keeping many components to balance which have different weight is not easy; this is inescapable problem in the all CT systems. To solve this problem against eccentric load, some kinds of control method have been compared and analysed by using protype CT. From the experimental results it is vilified that the CT drive system with model reference control method indicates higher speed regulation ability regardless of variable eccentric weight and uncertain position, and also in the limit condition of constant eccentric weight and fixed position, the compensation method with sinusoidal form is a strong candidate in view of speed ripple reduction.

The MPPT Control Method of The Seaflow Generation by Using Fuzzy Controller in boost Converter (boost 컨버터에 퍼지제어기를 적용한 조류 발전의 MPPT제어)

  • Kim, Cheon-Kyu;Kang, Hyoung-Seok;Kim, Young-Jo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.131-133
    • /
    • 2008
  • In this paper, the control method of extracting maximum power from the seaflow energy is proposed. This Paper describes a variable speed seaflow generation system with Permanent magnet synchronous motor, bridge rectifier, buck-boost converter and Fuzzy controller. In this Proposed seaflow generation system, the duty ratio of buck-boost converter is controlled by the fuzzy controller. An advantage of MPPT control method presented in this paper don't need to use the characteristic of seaflow turbine at various seaflow speed and measure the tidal speed and the rotating speed of tidal turbine. Therefore, the Proposed system has the characteristics of lower cost, higher efficiency and lower complexity. The effectiveness of algorithm is simulated based on Matlab Simulink.

  • PDF

Direct Torque Control of Induction Motors Using Closed Loop Flux Observer (폐루프 자속관측기를 이용한 유도전동기의 직접토크제어)

  • Geum, Won-Il;Ryu, Ji-Su;Lee, Kee-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1046-1049
    • /
    • 2000
  • A direct torque control(DTC) based sensorless speed control system which employs a new closed loop flux observer is proposed. The flux observer is an adaptive gain scheduling observer where motor speed is used as the scheduling variable. Adaptive nature comes from the fact that the estimates of stator resistance and speed are included as observer parameters. Simulation results show that the proposed flux observer gives better control and estimation results than conventional flux estimator specially in low speed region.

  • PDF