• Title/Summary/Keyword: Variable selection

Search Result 885, Processing Time 0.021 seconds

Fast Reference Frame Selection Algorithm Based on Motion Vector Reference Map (움직임 벡터 참조 지도 기반의 고속 참조 영상 선택 방법)

  • Lee, Kyung-Hee;Ko, Man-Geun;Seo, Bo-Seok;Suh, Jae-Won
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.4
    • /
    • pp.28-35
    • /
    • 2010
  • The variable block size motion estimation (ME) and compensation (MC) using multiple reference frames is adopted in H.264/AVC to improve coding efficiency. However, the computational complexity for ME/MC increases proportional to the number of reference frames and variable blocks. In this paper, we propose a new efficient reference frame selection algorithm to reduce the complexity while keeping the visual quality. First, a motion vector reference map is constructed by SAD of $4{\times}4$ block unit for multi reference frames. Next, the variable block size motion estimation and motion compensation is performed according to the motion vector reference map. The computer simulation results show that the average loss of BDPSNR is -0.01dB, the increment of BDBR is 0.27%, and the encoding time is reduced by 38% compared with the original method for H.264/AVC.

Generating Firm's Performance Indicators by Applying PCA (PCA를 활용한 기업실적 예측변수 생성)

  • Lee, Joonhyuck;Kim, Gabjo;Park, Sangsung;Jang, Dongsik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.191-196
    • /
    • 2015
  • There have been many studies on statistical forecasting on firm's performance and stock price by applying various financial indicators such as debt ratio and sales growth rate. Selecting predictors for constructing a prediction model among the various financial indicators is very important for precise prediction. Most of the previous studies applied variable selection algorithms for selecting predictors. However, the variable selection algorithm is considered to be at risk of eliminating certain amount of information from the indicators that were excluded from model construction. Therefore, we propose a firm's performance prediction model which principal component analysis is applied instead of the variable selection algorithm, in order to reduce dimensionality of input variables of the prediction model. In this study, we constructed the proposed prediction model by using financial data of American IT companies to empirically analyze prediction performance of the model.

Comparing MCMC algorithms for the horseshoe prior (Horseshoe 사전분포에 대한 MCMC 알고리듬 비교 연구)

  • Miru Ma;Mingi Kang;Kyoungjae Lee
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.1
    • /
    • pp.103-118
    • /
    • 2024
  • The horseshoe prior is notably one of the most popular priors in sparse regression models, where only a small fraction of coefficients are nonzero. The parameter space of the horseshoe prior is much smaller than that of the spike and slab prior, so it enables us to efficiently explore the parameter space even in high-dimensions. However, on the other hand, the horseshoe prior has a high computational cost for each iteration in the Gibbs sampler. To overcome this issue, various MCMC algorithms for the horseshoe prior have been proposed to reduce the computational burden. Especially, Johndrow et al. (2020) recently proposes an approximate algorithm that can significantly improve the mixing and speed of the MCMC algorithm. In this paper, we compare (1) the traditional MCMC algorithm, (2) the approximate MCMC algorithm proposed by Johndrow et al. (2020) and (3) its variant in terms of computing times, estimation and variable selection performance. For the variable selection, we adopt the sequential clustering-based method suggested by Li and Pati (2017). Practical performances of the MCMC methods are demonstrated via numerical studies.

On Testing Fisher's Linear Discriminant Function When Covariance Matrices Are Unequal

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • v.22 no.2
    • /
    • pp.325-337
    • /
    • 1993
  • This paper propose two test statistics which enable us to proceed the variable selection in Fisher's linear discriminant function for the case of heterogeneous discrimination with equal training sample size. Simultaneous confidence intervals associated with the test are also given. These are exact and approximate results. The latter is based upon an approximation of a linear sum of Wishart distributions with unequal scale matrices. Using simulated sampling experiments, powers of the two tests have been tabulated, and power comparisons have been made between them.

  • PDF

Logistic Regression Classification by Principal Component Selection

  • Kim, Kiho;Lee, Seokho
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.1
    • /
    • pp.61-68
    • /
    • 2014
  • We propose binary classification methods by modifying logistic regression classification. We use variable selection procedures instead of original variables to select the principal components. We describe the resulting classifiers and discuss their properties. The performance of our proposals are illustrated numerically and compared with other existing classification methods using synthetic and real datasets.

Improvment of Branch and Bound Algorithm for the Integer Generalized Nntwork Problem (정수 일반네트워크문제를 위한 분지한계법의 개선)

  • 김기석;김기석
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.19 no.2
    • /
    • pp.1-19
    • /
    • 1994
  • A generalized network problem is a special class of linear programming problem whose coefficient matrix contains at most two nonzero elements per column. A generalized network problem with 0-1 flow restrictions is called an integer generalized network(IGN) problem. In this paper, we presented a branch and bound algorithm for the IGN that uses network relaxation. To improve the procedure, we develop various strategies, each of which employs different node selection criterion and/or branching variable selection criterion. We test these solution strategies and compare their efficiencies with LINDO on 70 randomly generated problems.

  • PDF

NEW SELECTION APPROACH FOR RESOLUTION AND BASIS FUNCTIONS IN WAVELET REGRESSION

  • Park, Chun Gun
    • Korean Journal of Mathematics
    • /
    • v.22 no.2
    • /
    • pp.289-305
    • /
    • 2014
  • In this paper we propose a new approach to the variable selection problem for a primary resolution and wavelet basis functions in wavelet regression. Most wavelet shrinkage methods focus on thresholding the wavelet coefficients, given a primary resolution which is usually determined by the sample size. However, both a primary resolution and the basis functions are affected by the shape of an unknown function rather than the sample size. Unlike existing methods, our method does not depend on the sample size and also takes into account the shape of the unknown function.

Hierarchical Bayesian Inference of Binomial Data with Nonresponse

  • Han, Geunshik;Nandram, Balgobin
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.1
    • /
    • pp.45-61
    • /
    • 2002
  • We consider the problem of estimating binomial proportions in the presence of nonignorable nonresponse using the Bayesian selection approach. Inference is sampling based and Markov chain Monte Carlo (MCMC) methods are used to perform the computations. We apply our method to study doctor visits data from the Korean National Family Income and Expenditure Survey (NFIES). The ignorable and nonignorable models are compared to Stasny's method (1991) by measuring the variability from the Metropolis-Hastings (MH) sampler. The results show that both models work very well.

A Study on the Selection of Optimal Spot-weld Pitch for The Stainless Steel Car-body (스텐레스 차체 스폿용접부의 최적 피치 선정에 관한 연구)

  • 서승일;차병우
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.560-567
    • /
    • 1998
  • The pitch of spot-weld is a important variable in a view of both production cost and strength of car-body. Various renditions for the selection of pitches have been researched and especially in this paper the buckling analysis is carried out for the 2-sheet pannel structures. The optimal pitch is obtained by optimization program and FEM, which can enhance the buckling strength.

  • PDF

Principal Component Regression by Principal Component Selection

  • Lee, Hosung;Park, Yun Mi;Lee, Seokho
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.2
    • /
    • pp.173-180
    • /
    • 2015
  • We propose a selection procedure of principal components in principal component regression. Our method selects principal components using variable selection procedures instead of a small subset of major principal components in principal component regression. Our procedure consists of two steps to improve estimation and prediction. First, we reduce the number of principal components using the conventional principal component regression to yield the set of candidate principal components and then select principal components among the candidate set using sparse regression techniques. The performance of our proposals is demonstrated numerically and compared with the typical dimension reduction approaches (including principal component regression and partial least square regression) using synthetic and real datasets.