• Title/Summary/Keyword: Variable input power frequency

Search Result 89, Processing Time 0.023 seconds

The variable power divider circuit to use the ring-hybrid coupler (링-하이브리드 커플러를 이용한 가변 전력 분배기 회로)

  • Park, Ung-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.253-259
    • /
    • 2016
  • This paper introduces a new variable power divider circuit with an arbitrary power division ratio ranging from $1:{\infty}$ to ${\infty}:1$. The proposed power divider circuit consists of one branch-line coupler to be a good input matching characteristic, two variable phase shifters with 90-degree phase variation to be connected two output paths of the branch-line coupler, and one ring-hybrid coupler to combine output signals of two variable phase shifter. The power division ratio between the two output ports of the proposed power divider can be easily controlled by the phase variation of the two phase shifter. The proposed power divider circuit fabricates on laminated RF-35 (h = 20 mil, er=3.5; Taconic) with a center frequency of 2 GHz. The power division ratio of the fabricated prototype varies from about 1:1000 to 5000000:1, with an input reflection characteristic(S11) of below -20 dB, an insertion loss of about -1.0 dB, and an isolation characteristic of below -17 dB between two output ports in the range 1.9-2.1 GHz.

Hybrid Three-Level DC/DC Converter using an Energy Recovery Snubber (에너지회생스너버를 적용한 하이브리드 3레벨 DC/DC 컨버터)

  • Heo, Ye-Chang;Joo, Jong-Seong;Harerimana, Elysee-Malon;Kim, Eun-Soo;Kang, Cheol-Ha;Lee, Seung-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.36-43
    • /
    • 2017
  • This paper describes a hybrid multi-output three-level DC/DC converter suitable for a wide, high-input voltage range of an auxiliary power supply for a high-power photovoltaic generating system. In a high-power photovoltaic generating system, the solar panel output voltage depends on solar radiation quantity and varies from 450Vdc to 1100Vdc. The proposed hybrid multi-output three-level DC/DC converter, which is an auxiliary power supply, would be used as power source for control printed circuit boards and relay and cooling fans in a high-power photovoltaic generating system. The proposed multi-output ($24V_{DC}/30A$, $230V_{DC}/5A$) hybrid three-level boost converter, which uses an energy recovery snubber, is controlled by variable-frequency and phase-shifted modulations and can achieve zero-voltage switching with all operating conditions of input voltage and load range. Experimental results of a 2kW prototype are evaluated and implemented to verify the performance of the proposed converter.

A Highly Linear CMOS Baseband Chain for Wideband Wireless Applications

  • Yoo, Seoung-Jae;Ismail, Mohammed
    • ETRI Journal
    • /
    • v.26 no.5
    • /
    • pp.486-492
    • /
    • 2004
  • The emergence of wide channel bandwidth wireless standards requires the use of a highly linear, wideband integrated CMOS baseband chain with moderate power consumption. In this paper, we present the design of highly linear, wideband active RC filters and a digitally programmable variable gain amplifier. To achieve a high unity gain bandwidth product with moderate power consumption, the feed-forward compensation technique is applied for the design of wideband active RC filters. Measured results from a $0.5{\mu}m$ CMOS prototype baseband chain show a cutoff frequency of 10 MHz, a variable gain range of 33 dB, an in-band IIP3 of 13 dBV, and an input referred noise of 114 ${\mu}Vrms$ while dissipating 20 mW from a 3 V supply.

  • PDF

Analysis of system dynamic influences in robotic actuators with variable stiffness

  • Beckerle, Philipp;Wojtusch, Janis;Rinderknecht, Stephan;von Stryk, Oskar
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.711-730
    • /
    • 2014
  • In this paper the system dynamic influences in actuators with variable stiffness as contemporary used in robotics for safety and efficiency reasons are investigated. Therefore, different configurations of serial and parallel elasticities are modeled by dynamic equations and linearized transfer functions. The latter ones are used to identify the characteristic behavior of the different systems and to study the effect of the different elasticities. As such actuation concepts are often used to reach energy-efficient operation, a power consumption analysis of the configurations is performed. From the comparison of this with the system dynamics, strategies to select and control stiffness are derived. Those are based on matching the natural frequencies or antiresonance modes of the actuation system to the frequency of the trajectory. Results show that exclusive serial and parallel elasticity can minimize power consumption when tuning the system to the natural frequencies. Antiresonance modes are an additional possibility for stiffness control in the series elastic setup. Configurations combining both types of elasticities do not provide further advantages regarding power reduction but an input parallel elasticity might enable for more versatile stiffness selection. Yet, design and control effort increase in such solutions. Topologies incorporating output parallel elasticity showed not to be beneficial in the chosen example but might do so in specific applications.

The Design and Implementation of Inverter Power Supply with FGS for Sulfur Lamp (FGS를 이용한 황전등 전원장치의 설계 및 구현)

  • Jeong, Won-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.3
    • /
    • pp.10-16
    • /
    • 2005
  • This paper suggested the sulfur lamp power supply using Fuzzy Gain Scheduling(FGS), which was designed and confirmed the performance through manufacturing. it was based on Series Resonant Half Bridge Inverter(SRHBI), so that was applied Pulse Frequency Modulation(PFM), Zero Voltage Switching(ZVS), soft switching and soft start for input power variation and output power compensation. In order to get the lengthened life time of magnetron and stabilized output or power, power ratter and efficiency were improved by fuzzy gain algorism. It also made it possible to get not the existing foxed output power but continuous variable output power$(900\~1250[W])$. The manufactured power supply showed good results in input power $220[V]{\pm}15[\%]$ with stabilized output of power, luminous efficiency 97[1m/W] and power factor $96[\%]$.

A CMOS RF Power Detector Using an AGC Loop (자동 이득제어 루프를 이용한 CMOS RF 전력 검출기)

  • Lee, Dongyeol;Kim, Jongsun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.101-106
    • /
    • 2014
  • This paper presents a wide dynamic range radio-frequency (RF) root-mean-square (RMS) power detector using an automatic gain control (AGC) loop. The AGC loop consists of a variable gain amplifier (VGA), RMS conversion block and gain control block. The VGA exploits dB-linear gain characteristic of the cascade VGA. The proposed circuit utilizes full-wave squaring and generates a DC voltage proportional to the RMS of an input RF signal. The proposed RMS power detector operates from 500MHz to 5GHz. The detecting input signal range is from 0 dBm to -70 dBm or more with a conversion gain of -4.53 mV/dBm. The proposed RMS power detector is designed in a 65-nm 1.2-V CMOS process, and dissipates a power of 5 mW. The total active area is $0.0097mm^2$.

A UHF CMOS Variable Gain LNA with Wideband Input Impedance Matching and GSM Interoperability

  • Woo, Doo Hyung;Nam, Ilku;Lee, Ockgoo;Im, Donggu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.4
    • /
    • pp.499-504
    • /
    • 2017
  • A UHF CMOS variable gain low-noise amplifier (LNA) is designed for mobile digital TV tuners. The proposed LNA adopts a feedback topology to cover a wide frequency range from 474 to 868 MHz, and it supports the notch filter function for the interoperability with the GSM terminal. In order to handle harmonic distortion by strong interferers, the gain of the proposed LNA is step-controlled while keeping almost the same input impedance. The proposed LNA is implemented in a $0.11{\mu}m$ CMOS process and consumes 6 mA at a 1.5 V supply voltage. In the measurement, it shows the power gain of greater than 16 dB, NF of less than 1.7 dB, and IIP3 of greater than -1.7 dBm for the UHF band.

Characteristic Estimation of Single-Stage Active-Clamp Type High Frequency Resonant Inverter (단일 전력단 능동 클램프형 고주파 공진 인버터의 특성 평가)

  • 원재선;강진욱;김동희
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.114-122
    • /
    • 2004
  • This paper presents a novel single-stage active-clamp type high frequency resonant inverter. The proposed topology is integrated full-bridge boost rectifier as power factor corrector and active-clamp type high frequency resonant inverter into a single-stage. The input stage of the full-bridge boost rectifier works in discontinuous conduction mode(DCM) with constant duty cycle and variable switching frequency. So that a boost converter makes the line current follow naturally the sinusoidal line voltage waveform. By adding additional active-clamp circuit to conventional class-E high frequency resonant inverter, main switch of inverter part operates not only at Zero-Voltage-Switching mode but also reduces the switching voltage stress of main switch. Simulation results have demonstrated the feasibility of the proposed high frequency resonant inverter. Characteristics values based on characteristics estimation through circuit analysis is given as basis data in design procedure. Also, experimental results are presented to verify theoretical discussion. This proposed inverter will be able to be practically used as a power supply in the fields of induction heating applications, fluorescent lamp and DC-DC converter etc.

Multimachine Stabilizer using Sliding Mode Observer-Model Following including CLF for Measurable State Variables

  • Lee, Sang-Seung;Park, Jong-Keun
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.4
    • /
    • pp.53-58
    • /
    • 1997
  • In this paper, the power system stabilizer(PSS) using the sliding mode observer-model following(SMO-MF) with closed-loop feedback (CLF) for single machine system is extended to multimachine system. This a multimachine SMO-MF PSS for unmeasureable plant state variable is obtained by combining the sliding mode-model following(SM-MF) including closed-loop feedback(CLF) with the full-order observer(FOO). And the estimated control input for unmeasurable plant sate variables is derived by Lyapunov's second method to determine a control input that keeps the system stable. Time domain simulation results for the torque angle and for the angular velocity show that the proposed multimachine SMO-MF PSS including CLF for unmeasurable plant sate variables is able to damp out the low frequency oscillation and to achieve asymptotic tracking error between the reference model state at different initial conditions and at step input.

  • PDF

A Capacitor-Charging Power Supply Using a Series-Resonant Three-Level Inverter Topology

  • Song I. H.;Shin H. S.;Choi C. H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.301-303
    • /
    • 2001
  • In this paper we present a Capacitor Charging Power Supply (CCPS) using a series-resonant three-level inverter topology to improve voltage regulation and use semiconductor switches having low blocking voltage capability such as MOSFETs. This inverter can be operated with two modes, Full Power Mode (FPM) and Half Power Mode (HPM). In FPM inverter supplies the high frequency step up transformer with full DC-link voltage and in HPM with half DC-link voltage. HPM switching method will be adopted when CCPS output voltage reaches the preset target value and operates in refresh mode-charge is maintained on the capacitor. In this topology each semiconductor devices blocks a half of the DC-link voltage[2]. A 15kW, 30kV CCPS has been built and will be tested for an electric precipitator application. The CCPS operates from an input voltage of 500VDC and has a variable output voltage between 10 to 30kV and 1kHz repetition rate at 44nF capacitive load [3]. A resonant frequency of 67.9kHz was selected and a voltage regulation of $0.83\%$ has been achieved through the use of half power mode without using the forced cut off the switch current [1]. The theory of operation, circuit topology and test results are given.

  • PDF