• Title/Summary/Keyword: Variable flowrate control

Search Result 7, Processing Time 0.027 seconds

Design of pressure and flowrate control systems for a supercritical extraction process (초임계 추출 공정의 압력 및 유량 제어계 구성)

  • 김원철;김홍식;이광순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.471-475
    • /
    • 1988
  • Pressure and flowrate control systems for a supercritical extraction process are designed and analyzed. To do this, the dynamic model was first set up using the performance equations of control valves, CO2 compressor and the state equation of the supercritical fluid. Using this model, optimum pairs of manipulated and controlled variable which give least steady stat interaction are determined though the relative gain analysis.

  • PDF

Flow Compensating Characteristics for the Speed Variation of a Boom Sprayer (붐방제기용 주행속도 보상식 유량제어부의 동특성)

  • 구영모;정재은
    • Journal of Biosystems Engineering
    • /
    • v.23 no.2
    • /
    • pp.115-124
    • /
    • 1998
  • Over- and under-application of pesticides to crops have recently become main concerns regarding the environment conservation, product cost and firmer's safety. Thus, a uniform and optimal application method of pesticides was needed. The objective of study was to evaluate flow compensating characteristics of a variable flow control system for a boom sprayer using a laboratory setup. At the most variable conditions, the control system was acceptable with the flowrate control strategy. However, the sprayer control system became unstably fluctuating at the long execution time with small tolerance because of the constant valve on-time. This problem was solved by employing a variable on-time control. The optimal values for the damping ratio and the execution time were 2 and 1.0 sec, respectively, with the tolerances less than 3%. The performance of the control system at the optimal conditions were the response time of 3.8sec and the absolute steady-state error of 0.5% with the stable RCV and ROS ( < 1.0).

  • PDF

Uncertainty quantification of once-through steam generator for nuclear steam supply system using latin hypercube sampling method

  • Lekang Chen ;Chuqi Chen ;Linna Wang ;Wenjie Zeng ;Zhifeng Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2395-2406
    • /
    • 2023
  • To study the influence of parameter uncertainty in small pressurized water reactor (SPWR) once-through steam generator (OTSG), the nonlinear mathematical model of the SPWR is firstly established. Including the reactor core model, the OTSG model and the pressurizer model. Secondly, a control strategy that both the reactor core coolant average temperature and the secondary-side outlet pressure of the OTSG are constant is adopted. Then, the uncertainty quantification method is established based on Latin hypercube sampling and statistical method. On this basis, the quantitative platform for parameter uncertainty of the OTSG is developed. Finally, taking the uncertainty in primary-side flowrate of the OTSG as an example, the platform application work is carried out under the variable load in SPWR and step disturbance of secondary-side flowrate of the OTSG. The results show that the maximum uncertainty in the critical output parameters is acceptable for SPWR.

A Study on Compensation Method for Variable Loads in Electro-Hydraulic Servomechanism Using Load Pressure feedback (부하압력 피이드백을 이용한 전기-유압 서어보계의 부하변동 보상에 관한 연구)

  • Kim, Jong-Kyum;Lee, Jin-Kul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.3
    • /
    • pp.83-93
    • /
    • 1990
  • The characteristics of servo systems are desired to be independent for any unpredicted operational condition. The relation between input current and output flowrate of the servovalve is dependent on the load pressure and the idea of compensation using the load pressure feedback is fundamental theory in this paper. With this idea, this paper researches the performance improvement of hydraulic position control system. Static characteristics of compensated system is analyzed by means of analog computer simulation, digital computer simulation and experiment for nonlinear model and linearized model, respectively.

  • PDF

Performance Enhancement of Solar Thermal Storage Tank with Heat Exchange Coils (Part 2 : Simulation) (열교환코일 내장형 태양열 축열조의 성능향상 (제2보 시뮬레이션))

  • Kim, Jong-Hyun;Li, LongJie;Lee, Uk-Jae;Hong, Hiki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.9
    • /
    • pp.361-366
    • /
    • 2016
  • As an alternative of well-mixed storage tank with lower coil only, we have proposed a tank with lower and upper coils and verified a superior thermal stratification in a tank, which results in increased collector efficiency and solar fraction. But the phenomenon of temperature reversal was often experimentally observed in the tank, so a revised control was successfully applied which is to heat only lower coil using three way valve if temperature reversal occurs and to operate the collector with low flow rate when the condition of solar radiation is not good. In the present study, using TRNSYS we compared the existing lower heating and the proposed lower and upper heating with a control preventing temperature reversal. The results showed that the proposed method has an increase of collector efficiency by 5.1% and solar fraction by 3.2%.

On Characteristics of Regulator System in Hydraulic Piston Pump (유압 피스톤 펌프 레귤레이터 시스템 특성 연구)

  • 여명구;김종기;정재연
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.266-272
    • /
    • 2000
  • The importance of variable displacement piston pump is recently increasing in industrial applications, as it is widely used for raising the energy level of the fluid in hydraulic system. The regulator is the device that controls the pump output flow depending on the machine load and engine speed, and that regulates the discharge flow of the piston pump by controlling the swivel angel. This work deals with constant power control of a regulator system in bent-axis type piston pump. In order to use engine power effectively, it is important to keep the horsepower from the engine to the pump constant. Therefore, optimum power usage is obtained by accurately following the power hyperbola. First, the governing equations of the regulator are derived, and analysis is performed by numerical simulation in which significant parameters of regulator are identified. Also, we designed and manufactured the prototype of the constant power control regulator for experiments. The experimental results show the responsibility and pressure-flowrate characteristics and these are compared with the theoretical analysis. As the result, it is confirmed that the characteristics of the designed regulator correspond to the numerical simulation.

  • PDF

A Study of Dynamic Simulation of a Hybrid Absorption Chiller Utilizing Solar Power (태양열을 이용한 일이중 겸용 흡수식 냉온수기 동적성능 모사연구)

  • Shin, Young-Gy;Seo, Jung-A;Woo, Sung-Min;Kim, Hyo-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.967-972
    • /
    • 2009
  • A dynamic model has been developed to investigate the operability of a single and double-effect solar energy assisted parallel type absorption chiller. In the study, main components and fluid transport mechanism were modeled. And solar radiation and the solar collector also were also modeled along with its control design. The model was run for the single mode with solar energy supply only and the solar/gas driving double effect mode. From the simulation results, it was found that the present configuration of the chiller is not capable of regulating solution flow rates according to variable solar energy input. And the issues of the excessive circulation flowrate and the mismatch between available solar power and cooling load discourages the use of the single mode, but the dual use of gas and solar power is recommendable in view of controllability and enhanced COP.

  • PDF