• 제목/요약/키워드: Variable fidelity optimization

검색결과 5건 처리시간 0.019초

A Tailless UAV Multidisciplinary Design Optimization Using Global Variable Fidelity Modeling

  • Tyan, Maxim;Nguyen, Nhu Van;Lee, Jae-Woo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권4호
    • /
    • pp.662-674
    • /
    • 2017
  • This paper describes the multidisciplinary design optimization (MDO) process of a tailless unmanned combat aerial vehicle (UCAV) using global variable fidelity aerodynamic analysis. The developed tailless UAV design framework combines multiple disciplines that are based on low-fidelity and empirical analysis methods. An automated high-fidelity aerodynamic analysis is efficiently integrated into the MDO framework. Global variable fidelity modeling algorithm manages the use of the high-fidelity analysis to enhance the overall accuracy of the MDO by providing the initial sampling of the design space with iterative refinement of the approximation model in the neighborhood of the optimum solution. A design formulation was established considering a specific aerodynamic, stability and control design features of a tailless aircraft configuration with a UCAV specific mission profile. Design optimization problems with low-fidelity and variable fidelity analyses were successfully solved. The objective function improvement is 14.5% and 15.9% with low and variable fidelity optimization respectively. Results also indicate that low-fidelity analysis overestimates the value of lift-to-drag ratio by 3-5%, while the variable fidelity results are equal to the high-fidelity analysis results by algorithm definition.

계층적 크리깅 모델을 이용한 설계 최적화 기법의 유용성 검증 (Feasibility Study of Hierarchical Kriging Model in the Design Optimization Process)

  • 하홍근;오세종;이관중
    • 한국항공우주학회지
    • /
    • 제42권2호
    • /
    • pp.108-118
    • /
    • 2014
  • 근사모델을 이용한 최적설계 문제에서는 설계변수의 수가 증가함에 따라 근사모델의 정확도를 확보하기 위한 계산 횟수가 급격히 증가한다. 이를 해결하기 위해 저정확도 모델을 바탕으로 고정확도 모델로 보정하는 Variable-Fidelity Modeling을 이용하였다. 본 논문에서 Variable-Fidelity Model로는 계층적 크리깅 모델을 이용하였으며, 다목적 유전자 알고리즘과 결합하여 최적화 프레임워크를 제안하였다. 이 방법의 유용성을 검증하기 위하여 천음속 영역에 대한 익형 최적 설계를 하였다. 설계변수로는 PARSEC의 파라메터를 이용하였으며, 서로 다른 격자수를 가지는 경우 그리고 서로 다른 정확도를 가지는 해석자를 이용한 경우에 관하여 해석을 수행하였다. 검증을 위해 단일 정확도 모델에 대한 최적화 결과와 비교하였다. 모든 경우에 관하여 파레토 라인이 유사하게 나오는 것을 확인 할 수 있었으며, 계산시간은 계층적 크리깅 모델을 이용한 Variable-Fidelity Model이 단일 정확도 모델에 비하여 훨씬 줄어들었다. 이를 바탕으로 본 논문의 방법이 단일 정확도를 가지는 모델에 대한 최적화 방법과 유사한 정확도를 가지며 더욱 효율적임을 확인 할 수 있다.

정지비행 헬리콥터 로터의 설계를 위한 공력해석 (DESIGN-ORIENTED AERODYNAMIC ANALYSES OF HELICOPTER ROTOR IN HOVER)

  • 정현주;김태승;손창호;조창열
    • 한국전산유체공학회지
    • /
    • 제11권3호
    • /
    • pp.1-7
    • /
    • 2006
  • Euler and Navier-Stokes flow analyses for helicopter rotor in hover were performed as low and high fidelity analysis models respectively for the future multidisciplinary design optimization(MDO). These design-oriented analyses possess several attributes such as variable complexity, sensitivity-computation capability and modularity which analysis models involved in MDO are recommended to provide with. To realize PC-based analyses for both fidelity models, reduction of flow domain was made by appling farfield boundary condition based on 3-dimensional point sink with simple momentum theory and also periodic boundary condition in the azimuthal direction. Correlations of thrust, torque and their sensitivities between low and high complexity models were tried to evaluate the applicability of these analysis models in MDO process. It was found that the low-fidelity Euler analysis model predicted inaccurate sensitivity derivatives at relatively high angle of attack.

고 정밀 항공우주 유동해석 및 설계를 위한 공력계산 툴 (Essential Computational Tools for High-Fidelity Aerodynamic Simulation and Design)

  • 김종암
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.33-36
    • /
    • 2006
  • As the computing environment is rapidly improved, the interests of CFD are gradually focused on large-scale computation over complex geometry. Keeping pace with the trend, essential computational tools to obtain solutions of complex aerospace flow analysis and design problems are examined. An accurate and efficient flow analysis and design codes for large-scale aerospace problem are presented in this work. With regard to original numerical schemes for flow analysis, high-fidelity flux schemes such as RoeM, AUSMPW+ and higher order interpolation schemes such as MLP (Multi-dimensional Limiting Process) are presented. Concerning the grid representation method, a general-purpose basis code which can handle multi-block system and overset grid system simultaneously is constructed. In respect to design optimization, the importance of turbulent sensitivity is investigated. And design tools to predict highly turbulent flows and its sensitivity accurately by fully differentiating turbulent transport equations are presented. Especially, a new sensitivity analysis treatment and geometric representation method to resolve the basic flow characteristics are presented. Exploiting these tools, the capability of the proposed approach to handle complex aerospace simulation and design problems is tested by computing several flow analysis and design problems.

  • PDF

Kriging 기반 모델과 매개변수(Adjoint Variable)법을 이용한 항공기형상의 2단계 공력최적설계 (MULTI-STAGE AERODYNAMIC DESIGN OF AIRCRAFT GEOMETRIES BY KRIGING-BASED MODELS AND ADJOINT VARIABLE APPROACH)

  • 임진우;이병준;김종암
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.57-65
    • /
    • 2009
  • An efficient and high-fidelity design approach for wing-body shape optimization is presented. Depending on the size of design space and the number of design of variable, aerodynamic shape optimization process is carried out via different optimization strategies at each design stage. In the first stage, global optimization techniques are applied to planform design with a few geometric design variables. In the second stage, local optimization techniques are used for wing surface design with a lot of design variables to maintain a sufficient design space with a high DOF (Degree of Freedom) geometric change. For global optimization, Kriging method in conjunction with Genetic Algorithm (GA) is used. Asearching algorithm of EI (Expected Improvement) points is introduced to enhance the quality of global optimization for the wing-planform design. For local optimization, a discrete adjoint method is adopted. By the successive combination of global and local optimization techniques, drag minimization is performed for a multi-body aircraft configuration while maintaining the baseline lift and the wing weight at the same time. Through the design process, performances of the test models are remarkably improved in comparison with the single stage design approach. The performance of the proposed design framework including wing planform design variables can be efficiently evaluated by the drag decomposition method, which can examine the improvement of various drag components, such as induced drag, wave drag, viscous drag and profile drag.

  • PDF