• 제목/요약/키워드: Variable exponent

검색결과 61건 처리시간 0.018초

THERMAL INSTABILITY IN REACTIVE VISCOUS PLANE POISEUILLE / COUETTE FLOWS FOR TWO EXTREME THERMAL BOUNDARY CONDITIONS

  • Ajadi, Suraju Olusegun
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제13권2호
    • /
    • pp.73-86
    • /
    • 2009
  • The problem of thermal stability of an exothermic reactive viscous fluid between two parallel walls in the plane Poiseuille and Couette flow configurations is investigated for different thermal boundary conditions. Neglecting reactant consumption, the closed-form solutions obtained from the momentum equation was inserted into the energy equation due to dissipative effect of viscosity. The resulting energy equation was analyzed for criticality using the variational method technique. The problem is characterized by two parameters: the Nusselt number(N) and the dynamic parameter($\Lambda$). We observed that the thermal and dynamical boundary conditions of the wall have led to a significant departure from known results. The influence of the variable pre-exponential factor, due to the numerical exponent m, also give further insight into the behavior of the system and the results expressed graphically and in tabular forms.

  • PDF

EXISTENCE AND MULTIPLICITY OF WEAK SOLUTIONS FOR SOME p(x)-LAPLACIAN-LIKE PROBLEMS VIA VARIATIONAL METHODS

  • AFROUZI, G.A.;SHOKOOH, S.;CHUNG, N.T.
    • Journal of applied mathematics & informatics
    • /
    • 제35권1_2호
    • /
    • pp.11-24
    • /
    • 2017
  • Using variational methods, we study the existence and multiplicity of weak solutions for some p(x)-Laplacian-like problems. First, without assuming any asymptotic condition neither at zero nor at infinity, we prove the existence of a non-zero solution for our problem. Next, we obtain the existence of two solutions, assuming only the classical Ambrosetti-Rabinowitz condition. Finally, we present a three solutions existence result under appropriate condition on the potential F.

경사기능재료를 사용한 회전하는 외팔보의 진동해석 (Free Vibration Analysis of a Rotating Cantilever Beam Made-up of Functionally Graded Materials)

  • 이기복;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제23권8호
    • /
    • pp.742-751
    • /
    • 2013
  • The vibration analysis of a rotating cantilever beam made-up of functionally graded materials is presented based on Timoshenko beam theory. The material properties of the beams are assumed to be varied through the thickness direction following a simple power-law form. The frequency equations, which are coupled through gyroscopic coupling terms, are calculated using hybrid deformation variable modeling along with the Rayleigh-Ritz assumed mode methods. In this study, resulting system of ordinary differential equations shows the effects of power-law exponent, angular speed, length to height ratio and Young's modulus ratio. It is believed that the results will be a reference with which other researchers and commercial FE analysis program, ANSYS can compare their results.

직류 피뢰기용 ZnO 소자의 전기적 특성 (The Electrical Characteristics of ZnO varistor for d.c. Arrester)

  • 김석수;최익순;조한구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.2
    • /
    • pp.1106-1110
    • /
    • 2003
  • The electrical characteristics of $A{\sim}C's$ ZnO varistors fabricated according to variable sintering condition, which sintering temperature is $l130^{\circ}C$ and speeds of pusher are A: 2mm/min, B: 4mm/min, C: 6 mm/min, respectively, were investigated. The varistor voltage of $A{\sim}C's$ ZnO varistors sintered at $1130^{\circ}C$ increased in order A < B $A{\sim}C's$ ZnO varistors exhibited below 2mA at rated voltage. Lightning impulse residual voltage of A's ZnO varistor suited standard characteristics, which is 3.85kV at 2.5kA, 4.4kV at 5kA and 5.16kV at 10kA. After multi lightning impulse residual voltage test of A's ZnO varistor exhibited good discharge characteristics which ZnO varistor reveals no evidence of puncture, flashover, cracking in visual examination. After high current impulse test of A's ZnO varistor exhibited good discharge characteristics, which variation rate of residual voltage is 0.4% before and after test, and revealed no evidence.

  • PDF

개정 Prand시 이론을 이용한 유사 농도 분포식 (A Sediment Concentration Distribution Based on a Revised Prandtl Mixing Theory)

  • 정관수
    • 한국수자원학회논문집
    • /
    • 제30권1호
    • /
    • pp.3-13
    • /
    • 1997
  • 멱 유속 분포를 구하기 위해 개정 Prandtl 혼합 거리 이론이 이용되었으며, 여기에서 사용된 지수값의 범위는 1/4~1/7이었다. 이 개정된 유속분포를 이용하여 간단한 부유사 농도 분포식을 개발하였다. 미국 지질조사국이 리오그란데강에서 실측한 자료와 명목값인 $\beta$=1.0, $textsc{k}$=0.4, 그리고 가시관에 의해 얻어진 침강속도를 이용한 개정 농도식 계산결과와 실측지와의 비교는 양호한 편이었으며, 지수에 임의로 두배를 해주었을 경우에는 좋은 결과를 보였다. 적당한 $\beta$, $textsc{k}$, 그리고 침강속도를 선택하기 위해 더 많은 연구가 필요하지만 이러한 연구가 대규모 난류와 이차류 영향에 대한 설명을 할 수는 없을 것이다. 하지만 실용적인 측면에서 보면 어느 관측지점에 대한 매우 자세하고 특별하게 측정된 자료는 그 지점에 맞는 지수나 계수를 찾아낼 수도 있다.

  • PDF

고속철도 지면반사파를 고려한 열차무선 전파모델 (Modeling of Train Radio Propagation Affected by Ground Reflected Wave in High-speed Railway)

  • 배성호;송기홍;최규형
    • 한국철도학회논문집
    • /
    • 제16권6호
    • /
    • pp.460-465
    • /
    • 2013
  • 고속철도에서의 열차무선전파는 일반적인 이동통신전파와 달리 레일, 침목 및 자갈로 구성된 철로면 반사에 의해 불규칙적으로 수신되는 지면반사파의 영향을 받는다. 본 논문에서는 이와 같이 불규칙적으로 수신되는 철로면 반사파를 랜덤변수로 모의하고, 여기에 송수신간 직접 경로에 의한 직접파를 추가한 열차무선 전파모델을 제안하였다. 제안한 전파모델을 이용한 시뮬레이션 결과 열차무선에서의 경로손실지수는 3.0으로 분석되어, 일반적인 이동통신환경에서의 4.0에 비해 경로손실이 감소하는 것으로 나타났다. 또한, 고속철도 현장에서의 열차무선 수신전력 측정치에서도 동일하게 경로손실지수가 3.0으로 분석되었다. 이상과 같은 시뮬레이션 및 측정결과로부터, 열차무선 전파모델을 검증하고 경로손실지수를 도출할 수 있었으며, 이 결과는 고속철도 열차무선통신망의 커버리지 예측 및 기지국 설계에 응용할 수 있다.

전철탑재형 직류피뢰기용 ZnO 바리스터의 개발 (A Development of ZnO Varistor for Railroad Vehicle d.c. Arrester)

  • 조이곤;박춘현;정세영;송태권;김석수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.552-556
    • /
    • 2002
  • The microstructure and electrical characteristics of A~C's ZnO varistors fabricated according to variable sintering condition, which sintering temperature is $1130^{\circ}C$ and speeds of pusher are A: 2mm/min, B: 4mm/min, C: 6mm/min, respectively, were investigated. In the microstructure, A~C's ZnO varist-ors fabricated variable sintering condition was consisted of ZnO grain(ZnO), spinel phase$(Zn_{2.33}Sb_{0.67}O_4)$ Bi-rich $phase(Bi_{2}O_{3})$, wholly. Varistor voltage of A~C's ZnO varistors sintered at $1130^{\circ}C$ increased in order A < B < C's ZnO varistors. C's ZnO varistor exhibited good characteristics that nonlinear exponent is 31.70. Leakage current of A~C's ZnO varistors exhibited below 2mA at rated voltage. Lightning impulse residual voltage of A's ZnO varistor suited standard characteristics, which is 3.85kV at 2.5kA, 4.4kV at 5kA and 5.16kV at 10kA. After multi lightning impulse residual voltage test of A's ZnO varistor exhibited good discharge characteristics which ZnO varistor reveals no evidence of puncture, flashover, cracking in visual examination. After high current impulse test of A's ZnO varistor exhibited good discharge characteristics, which variation rate of residual voltage is 0.4% before and after test, and revealed no evidence.

  • PDF

Assessment of porosity influence on dynamic characteristics of smart heterogeneous magneto-electro-elastic plates

  • Ebrahimi, Farzad;Jafari, Ali;Mahesh, Vinyas
    • Structural Engineering and Mechanics
    • /
    • 제72권1호
    • /
    • pp.113-129
    • /
    • 2019
  • A four-variable shear deformation refined plate theory has been proposed for dynamic characteristics of smart plates made of porous magneto-electro-elastic functionally graded (MEE-FG) materials with various boundary conditions by using an analytical method. Magneto-electro-elastic properties of FGM plate are supposed to vary through the thickness direction and are estimated through the modified power-law rule in which the porosities with even and uneven type are approximated. Pores possibly occur inside functionally graded materials (FGMs) due the result of technical problems that lead to creation of micro-voids in these materials. The variation of pores along the thickness direction influences the mechanical properties. The governing differential equations and boundary conditions of embedded porous FGM plate under magneto-electrical field are derived through Hamilton's principle based on a four-variable tangential-exponential refined theory which avoids the use of shear correction factors. An analytical solution procedure is used to achieve the natural frequencies of embedded porous FG plate supposed to magneto-electrical field with various boundary condition. A parametric study is led to carry out the effects of material graduation exponent, coefficient of porosity, magnetic potential, electric voltage, elastic foundation parameters, various boundary conditions and plate side-to-thickness ratio on natural frequencies of the porous MEE-FG plate. It is concluded that these parameters play significant roles on the dynamic behavior of porous MEE-FG plates. Presented numerical results can serve as benchmarks for future analyses of MEE-FG plates with porosity phases.

Investigating vibration behavior of smart imperfect functionally graded beam subjected to magnetic-electric fields based on refined shear deformation theory

  • Ebrahimi, Farzad;Jafari, Ali
    • Advances in nano research
    • /
    • 제5권4호
    • /
    • pp.281-301
    • /
    • 2017
  • In this disquisition, an exact solution method is developed for analyzing the vibration characteristics of magneto-electro-elastic functionally graded (MEE-FG) beams by considering porosity distribution and various boundary conditions via a four-variable shear deformation refined beam theory for the first time. Magneto-electroelastic properties of porous FG beam are supposed to vary through the thickness direction and are modeled via modified power-law rule which is formulated using the concept of even and uneven porosity distributions. Porosities possibly occurring inside functionally graded materials (FGMs) during fabrication because of technical problem that lead to creation micro-voids in FG materials. So, it is necessary to consider the effect of porosities on the vibration behavior of MEE-FG beam in the present study. The governing differential equations and related boundary conditions of porous MEE-FG beam subjected to physical field are derived by Hamilton's principle based on a four-variable tangential-exponential refined theory which avoids the use of shear correction factor. An analytical solution procedure is used to achieve the natural frequencies of porous-FG beam supposed to magneto-electrical field which satisfies various boundary conditions. A parametric study is led to carry out the effects of material graduation exponent, porosity parameter, external magnetic potential, external electric voltage, slenderness ratio and various boundary conditions on dimensionless frequencies of porous MEE-FG beam. It is concluded that these parameters play noticeable roles on the vibration behavior of MEE-FG beam with porosities. Presented numerical results can be applied as benchmarks for future design of MEE-FG structures with porosity phases.

별 측광을 통한 야간 에어로졸의 광학적 두께 산출 (Retrieval of Nighttime Aerosol Optical Thickness from Star Photometry)

  • 오영록
    • 대기
    • /
    • 제25권3호
    • /
    • pp.521-528
    • /
    • 2015
  • In this study star photometry was applied to retrieve aerosol optical thickness (AOT) at night. The star photometry system consisted of small refractor, optical filters, CCD camera, and driving mount and was located in Suwon. The calibration constants were retrieved from the astronomical Langley method but standard deviations of these were more than 10% of the mean values. After the calibration the nighttime AOT was retrieved and cloud-screened in clear six days from 25 Nov. 2014 to 17 Jan. 2015. To estimate the quality of the measurements the nighttime AOT was combined with daytime AOT retrieved from sky-radiometer that was located in Seoul and 17 km away from the star photometry system. In spite of the uncertainty of the calibration constants and the spatial difference of two observation systems, the temporal changes of the nighttime AOT coincided with the daytime. The nighttime ${\AA}ngstr{\ddot{o}}m$ exponent was about 20% lower and more variable than the daytime because of the uncertainty of the calibration constants. If the calibration process is more precise, the combination of star and sun or sky photometry system can monitor the air pollution day and night constantly.