• Title/Summary/Keyword: Variable controls

Search Result 222, Processing Time 0.025 seconds

An Implementation of Non-invasive Blood Pressure System Using Variable Characteristic Ratio (모듈방식의 가정용 혈압 측정 시스템 구현)

  • 이종수;노영아;이상용;박종억;김영길
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.7
    • /
    • pp.1263-1271
    • /
    • 2001
  • There are two methods in blood pressure measurement ; Invasive methode and Non-invasive method. The Invasive methode can get the 띠cod pressure measurement but, patient feel uncomfortable. So Non-invasive methode used generally. The Oscillometric method is typical Non-Invasive method. This method is commonly used to measure BP in electric sphygmomanometer and has various algorithm. In this paper it is described about a algorithm, it controls, determinates the cuff pressure, and fillers the measured BP data. This system can interface with PC(personal computer) by RS-232 and save the measured data in PC. This system deflates the cuff pressure by Solenoid valve. The main algorithm are oscillometric and maximum amplitude algorithm(MAA). MAA has various measured oscillation, it depends on patient's age, height, weight and arm circumference size. In this paper proposed system can measure Systolic BP, Diastolic BP, and Mean BP using Interpolation, Auto Reinflation algorithm.

  • PDF

A constant angle excavation control of excavator's attachment using neural network (신경 회로망을 이용한 유압 굴삭기의 일정각 굴삭 제어)

  • 서삼준;서호준;김동식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.151-155
    • /
    • 1996
  • To automate an excavator the control issues resulting from environmental uncertainties must be solved. In particular the interactions between the excavation tool and the excavation environment are dynamic, unstructured and complex. In addition, operating modes of an excavator depend on working conditions, which makes it difficult to derive the exact mathematical model of excavator. Even after the exact mathematical model is established, it is difficult to design of a controller because the system equations are highly nonlinear and the state variable are coupled. The objective of this study is to design a multi-layer neural network which controls the position of excavator's attachment. In this paper, a dynamic controller has been developed based on an error back-propagation(BP) neural network. Computer simulation results demonstrate such powerful characteristics of the proposed controller as adaptation to changing environment, robustness to disturbance and performance improvement with the on-line learning in the position control of excavator attachment.

  • PDF

Flow/Pressure/Power Control of Hydraulic Pump Utilizing Switching Control Mode (스위칭 제어 모드를 이용한 유압펌프의 유량/압력/동력 제어)

  • Jung, D.S.;Kim, H.E.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.4
    • /
    • pp.8-14
    • /
    • 2007
  • The electro-hydraulic pump is usually used in testing equipments which require one control function. But until now, it is not applied to industrial equipments which are exposed to severe working environment and require various control functions. This paper proposes a technique which controls continuously flow, pressure and power by utilizing switching control mode. Mathematical model is developed from the continuity equation for the pressurized control volume and the torque balance for the swash plate motion. To simplify the model we make the linear state equation by differentiating the nonlinear model. We analyze the stability and disturbance by using the state variable model. Finally, we review the control performances of flow, pressure and power by tests using PID controller.

  • PDF

Development of Matlab-based Variable Torque Simulator for wind Turbine Systems (풍력 터빈 모의 실험을 위한 Matlab 기반 가변 토오크 시뮬레이터 개발)

  • Kim, Su-Jin;Kim, Sung-Ho;Joo, Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.396-402
    • /
    • 2010
  • In this paper the principles and structure of a WTS (Wind Turbine Simulator) are described. The proposed WTS is a versatile system specially designed for the purpose of developing and testing new control strategies for wind energy conversion systems. The simulator includes two sub-systems; a torque controller which controls a 3-phase induction motor in order to simulate the wind turbine and wind speed generator which can simulate an actual wind speed. In order to make the proposed system working in real-time, two sub-systems are incorporated into one simulink block by using Real-time workshop. The performance of the proposed system is verified by considering various wind speeds.

An All-Optical Gain-Controlled Amplifier for Bidirectional Transmission

  • Choi, Bo-Hun;Hong, Kyung-Jin;Kim, Chang-Bong;Won, Yong-Hyub
    • ETRI Journal
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • A novel all-optical gain-controlled (AOGC) bidirectional amplifier is proposed and demonstrated in a compact structure. The AOGC function using fiber Bragg grating (FBG) pairs controls both directional signals independently, and combinations of optical interleavers and isolators suppress Rayleigh backscattering (RB) noise. The amplifier achieves high and constant gain with a wide dynamic input signal range and low noise figure. The performance does not depend on the input signal conditions, whether static-state or transient signals, or whether there is symmetric or asymmetric data traffic on bidirectional transmission. Transmission comparison experiments between invariable symmetrical and random variable asymmetric bidirectional data traffic verify that the all-optical gain control and bidirectional amplification functions are successfully combined into this proposed amplifier.

  • PDF

A Study on The Determinants of New Product Development Performance (신제품개발성과에 영향을 미치는 요인연구)

  • Lee, Kwang-Soo;Ree, Min-Ho;Ree, Sang-Bok
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2010.04a
    • /
    • pp.310-320
    • /
    • 2010
  • In this study, factors affecting the development of new products and research about the relevance of the factors based on the research model was configured. Existing research and technology commercialization process of discrimination that occur in the importance of risk management and open innovation company's competitive advantage in new product development and affect the reporter know what the effect is used as a control variable effects. Factor in the development of new products through research and innovation capacity and knowledge management activities, the introduction of open innovation and enterprise level ever due to the level of risk management controls and the need for effective research to study the model was proposed.

  • PDF

Adaptive Neural Control for Output-Constrained Pure-Feedback Systems (출력 제약된 Pure-Feedback 시스템의 적응 신경망 제어)

  • Kim, Bong Su;Yoo, Sung Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.42-47
    • /
    • 2014
  • This paper investigates an adaptive approximation design problem for the tracking control of output-constrained non-affine pure-feedback systems. To satisfy the desired performance without constraint violation, we employ a barrier Lyapunov function which grows to infinity whenever its argument approaches some limits. The main difficulty in dealing with pure-feedback systems considering output constraints is that the system has a non-affine appearance of the constrained variable to be used as a virtual control. To overcome this difficulty, the implicit function theorem and mean value theorem are exploited to assert the existence of the desired virtual and actual controls. The function approximation technique based on adaptive neural networks is used to estimate the desired control inputs. It is shown that all signals in the closed-loop system are uniformly ultimately bounded.

Design of Fuzzy-Power Controller for a Pump with Electric Proportional Valve (절자 비례 밸브를 갖는 펌프의 퍼지-동력제어기 설계)

  • 전순용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.441-447
    • /
    • 1998
  • Motivated by a recent work, a fuzzy-power-controller(FPC) is designed for the relieving-horsepower control of output variable pump with electrical proportional valve and actually implemented on the industrial excavator. In order to calculate the output power of pump with input of FPC, a linear discrete time model of load system to pump is obtained and the result is applied to control the engine-pump coupled system by software without pressure and flow sensor. The FPC controls the engine and pump coupled system by relieving horsepower control according to the change of load and the running conditions in relieving horsepower control are selected by fuzzy inference engine. A case study is peformed through the construction of the control device and installation on the excavator. It shows that the relieving-horsepower control system with the FPC, as suggested in this paper, is superior to the conventional PID controllers. And also, the excavator, with the FPC, shows that the power-loss of the coupled system is reduced and the running speed of the hydraulic actuator is enhanced.

  • PDF

Queue Management-Based Duty Cycle Control in Wireless Sensor Networks (무선 센서 네트워크에서 큐 관리 기반의 듀티 사이클 제어)

  • Byun, Hee-Jung;Shon, Su-Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1273-1277
    • /
    • 2011
  • This paper proposes a control-based approach for duty cycle adaptation in wireless sensor networks. The proposed method, QCon, controls duty cycle through queue management in order to achieve high performance under variable traffic rates. To minimize energy consumption while meeting delay requirement, we design a feedback controller, which adapts the sleeping time according to dynamically changing traffic by constraining the queue length at a predetermined value. Based on control theory, we analyze the adaptive behavior of QCon and derive conditions for system stability. Results from asymptotic analysis and simulations indicate that QCon outperforms existing scheduling protocol by achieving more energy savings while satisfying delay requirement.

Senseless Control of PMSM using Current Regulator Output Voltage in the Synchronous D-axis (자속축 전류제어기 출력전압를 이용한 PMSM 센서리스 제어)

  • Lee, Jong-Kun;Seok, Jul-Ki;Lee, Dong-Choon
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.147-149
    • /
    • 2004
  • This paper presents a new velocity estimation strategy of a non-salient permanent magnet synchronous motor(PMSM) drive without high frequency signal injection or special PWM pattern. This approach is based on the d-axis current regulator output voltage of the drive system which has the information of rotor position error. The rotor velocity can be estimated through a rotor position tracking PI controller that controls the position error to zero. For zero and low speed operation, the PI gains of rotor position tracking controller have a variable structure. The PI tuning formulas are derived by analyzing this control system using the frequency domain specifications such as phase margin and bandwidth assignment.

  • PDF