• Title/Summary/Keyword: Variable Wind Speed

Search Result 271, Processing Time 0.033 seconds

A study on the Maximum Power Point Tracking Control System of Wind Power Generation (풍력발전의 최대전력점 추종제어 방법에 관한 연구)

  • Ko, Seok-Cheol;Lee, Jae;Lim, Sung-Hun;Kang, Hyeong-Gon;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.153-156
    • /
    • 2001
  • Maximum Power Point Tracking(MPPT) Is used in wind power generation systems to maximize wind power turbin output power, irrespective of wind speed conditions and of the load electrical characteristics. In this paper we do the equivalent modeling the mechanical energy of wind power turbine according to wind speed into the synchronous generator. We analyse the equivalent modeling output part of rectifier into DC/DC converter input part theoretically. We design a control algorithm for variable voltage according to wind speed intensity and density so that load voltage of chopper is controlled steadily using the maximum power point tracking(MPPT) control method. We analyse a battery charging characteristics and a charging circuit for power storage enabling the supply of stable power to the load. We design a system and do the modeling of it analytically so that it supplies a stable power to the load by constructing a DC-AC inverter point. Also we design a charging circuit usable in actual wind power generation system of 30kW and confirm its validity.

  • PDF

The study for calculating the geometric average height of Deacon equation suitable to the domestic wind correction methodology. (국내풍속보정에 적합한 Deacon 방정식의 기하평균높이 산정방법에 대한 연구)

  • Cheang, Eui-Heang;Moon, Chae-Joo;Jeong, Moon-Seon;Jo, Kyu-Pan;Park, Gui-Yeol
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.9-14
    • /
    • 2010
  • The main cause of global warming is carbon dioxide generated from the use of fossil fuels, and active research on the reduction of carbon is in progress to slow down the increasing global warming. Wind turbines generate electricity from kinetic energy of wind and are considered as representative for an energy source that helps to reduce carbon emission. Since the kinetic energy of wind is proportional to the cube of the wind speed, the intensity of wind affects wind farm construction validity the most. Therefore, to organize a wind farm, validity analysis should be conducted first through measurement of the wind resources. To facilitate the approval and permission and reduce installation cost, measuring sensors should be installed at locations below the actual wind turbine hub. Wind conditions change in shape with air density, and air density is most affected by the variable sterrain and surface type. So the magnitude of wind speed depends on the ground altitude. If wind conditions are measured at a location below the wind turbine hub, the wind speed has to be extrapolated to the hub height. This correction of wind speed according to height is done with the Deacon equation used in the statistical analysis of previously observed data. In this study, the optimal Deacon equation parameter was obtained through the analysis of the correction of the wind speed error with the Deacon equation based on the characteristics of terrain.

Analysis of Dynamic Response of 1.5MW DFIG Wind Power Simulator with Real-grid Connection (실 계통 연계 1.5MW급 DFIG 풍력발전 시뮬레이터의 응동특성 분석)

  • Choy, Young-Do;Jeon, Young-Soo;Jeon, Dong-Hoon;Shin, Jeong-Hoon;Kim, Tae-Kyun;Jeong, Byung-Chang
    • New & Renewable Energy
    • /
    • v.5 no.3
    • /
    • pp.4-12
    • /
    • 2009
  • The effect of change in DFIG (doubly-fed wind power generator) rotating speed and active power on the grid was analyzed to understand the characteristics of wind power using the wind power simulator connected to the grid at Gochang Power Quality Test Center. Electric power quality improvement devices (DVR, STATCOM, SSTS) and electric power quality disturbance application devices for 22.9 kV grid are equipped at Gochang Power Quality Test Center. Induction motor and VVVF inverter were used to emulate the blade of a wind power generator, and a simulator for Cage wound induction generator and DFIG was developed. The trial line were assumed to be 20 km and 40 km in length, and variable wind speed pattern was set using wind speed data from Ducjeokdo to verify the power characteristics of the wind power generator according to rotating speed.

  • PDF

Development of Grid Connection Type Inverter for 30kW Wind Power Generation System (30kW급 발전시스템의 계통 연계형 인버터 개발)

  • Hahm, Nyeon-Kun;Kang, Seung-Ook;Kim, Yong-Joo;Han, Kyong-Hee;Ahn, Gyu-Bok;Song, Seung-Ho;Kim, Dong-Yong;Rho, Do-Hwan;Oh, Young-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.990-992
    • /
    • 2002
  • 30kW electrical power conversion system is delveloped for the variable speed wind turbine system. In the wind energy conversion system(WECS) a synchronous generator with field current excitation converts the mechanical energy into electrical energy. As the voltage and frequency of generator output vary according to the wind speed, a dc/dc boosting chopper is utilized to maintain constant dc link voltage. Grid connection type PWM inverter supply currents into the utility line by regulating the dc link voltage. The active power is controlled by q-axis current which the reactive power can be controlled by d-axis current reference change. The phase angle of utility voltage is detected using s/w PLL(Phased Locked Loop) in d-q synchronous reference frame. This scheme gives a low cost power solution for variable speed WECS.

  • PDF

Pitch Angle Control of Wind Turbine based on Variable PID Gains (가변적인 PID 이득에 기초한 풍력발전 시스템의 피치제어)

  • Ko, Jung-Min;Yang, Soo-Youg;Boo, Chang-Jin;Kim, Ho-Chan;Huh, Jong-Chul;Lee, Junghoon;Kang, Min-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • For regulating generator speed above the rated wind, versatile methods have been published based on PID. However, these methods with the fixed PID gains could not guarantee that the controller works well in the whole area. In this paper, variable PID gain method has been suggested to overcome this problem. The sensitivity of power to blade pitch angle changes according to wind speed. The variable PID gain function has been derived from this sensitivity.

A Study on DFIG Wind Power Generation System Modelling using Real-Wind Speed (실제 풍속을 이용한 DFIG 풍력발전시스템 구현에 관한 연구)

  • Byeon, Gil-Sung;Park, In-Kwon;Jang, Gil-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.494_495
    • /
    • 2009
  • This paper presents a study of DFIG wind power generation system for real-time simulation. For real-time simulation, the real-time digital simulator (RTDS) and its user friendly interface simulation software (RSCAD) are used. 2.2MW grid-connected variable speed DFIG wind power generation system is modeled and analyzed in this study. Stator-flux oriented vector control scheme is applied to stator, rotor side converter control, and back-to-back PWM converters are implemented for the decoupled control. The real-wind speed signal extracted by an anemometer is used for realistic and accurate simulation analysis. Block diagrams for DFIG and control scheme of stator, rotor-side are introduced. Real-time simulation cases are carried out and analyzed for the validity of this work.

  • PDF

A study on the LQG control in wind power systems (풍력발전시스템에서의 LQG 제어에 관한 연구)

  • Kim, Ho-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.603-605
    • /
    • 1999
  • In this paper, the aspects on modeling and control of an existing wind turbine are discussed. When designing control for variable-speed wind turbine, one deals with highly resonant, nonlinear dynamic systems subject to random excitation, i.e. wind turbulence. This requires good knowledge of the dynamics to be controlled. This paper describes an mathematical modeling of wind turbines with emphasis on control design for an existing wind turbine.

  • PDF

Aerodynamic Characteristics of Several Airfoils for Design of Passive Pitch Control Module of 10 kW Class (10kW 급 풍력 블레이드의 수동형 피치제어 모듈의 설계를 위한 여러가지 익형의 공력 특성에 관한 연구)

  • Kang, Sang Kyun;Lee, Ji Hyun;Lee, Jang-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.609-617
    • /
    • 2014
  • Even though the variable pitch control of a wind turbine blade is known as an effective component for power control over the rated wind speed, it has limited applicability to small wind turbines because of its relatively high cost on the price of small wind turbine. Instead, stall control is generally applied in the blade design without any additional cost. However, stall delay can frequently be caused by high turbulence around the turbine blade, and it can produce control failures through excessive rotational speed and overpowering the electrical generator. Therefore, a passive pitch control module should be considered, where the pitch moves with the aerodynamic forces of the blade and returns by the elastic restoring force. In this study, a method to calculate the pitch moment, torque, and thrust based on the lift and drag of the rotating blade wing was demonstrated, and several effective wing shapes were reviewed based on these forces. Their characteristics will be estimated with variable wind speed and be utilized as basic data for the design of the passive pitch control module.

A Voltage Control of Variable-Speed Synchronous Generator (가변속 동기발전기의 전압제어)

  • Kong, Jeong-Sik;Seo, Young-Taek;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.202-204
    • /
    • 1994
  • This paper is describing a voltage control of variable speed synchronous generator for wind-per generation system. The exciting system is adopted that the generator operates in a variable frequency and constant voltage. The generating voltage is controlled by field current varying the firing angle controller.

  • PDF

Simulation Study on Capturing Maximum Wind Power Control Method of DFIG based on PSCAD/EMTDC (PSCAD를 이용한 DFIG풍력발전 최대출력 풍력발전 제어방법에 관한 연구)

  • Sun, Qitao;Choi, Joon-Ho;Park, Sung-Jun;Nam, Soon-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1122_1123
    • /
    • 2009
  • Doubly Fed Induction Generator (DFIG) used in variable speed constant frequency wind energy generation system can capture wind energy with the highest efficiency by using the stator flux oriented vector control method. This paper sets up a DFIG modeling of wind generation system in PSCAD/EMTDC to simulate the operational performance with wind speed variation. In order to achieve the characteristics of the maximum utilization of wind power, this paper uses the vector control technology to track largest wind power and the independent control of generator active and reactive power.

  • PDF