• Title/Summary/Keyword: Variable Water Volume

Search Result 74, Processing Time 0.033 seconds

Development of High Performance LonWorks Based Control Modules for Network-based Induction Motor Control

  • Kim, Jung-Gon;Hong, Won?Pyo;Yun, Byeong-Ju;Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.414-420
    • /
    • 2005
  • The ShortStack Micro Server enables any product that contains a microcontroller or microprocessor to quickly and inexpensively become a networked, Internet-accessible device. The ShortStack Micro Server provides a simple way to add LonWorks networking to new or existing smart devices. . It implements the LonTalk protocol and provides the physical interface with the LonWorks communication. The ShortStack host processor can be an 8, 16, or 32-bit microprocessor or microcontrollers. The ShortStack API and driver typically require about 4kbytes of program memory on the host processor and less than 200 bytes of RAM. The interface between host processor and the ShortStack Micro Server may be a Serial Communication Interface (SCI). The LonWorks control module with a high performance is developed, which is composed of the 8 bit PIC Microprocessor for host processor and the smart neuron chip for the ShortStack Micro Server. This intelligent control board is verified as proceeding the various function tests from experimental system with an boost pump and inverter driving systems. It is also confirmed that the developed control module provides stably 0-10VDC linear signal to the input signal of inverter driving system for varying the induction motor speed. Thus, the experimental results show that the fabricating intelligent board carried out very well the various functions in the wide operating ranges of boost pump system. This developed control module expect to apply to industrial fields to require the comparatively exact control and monitoring such as multi-motor driving system with inverter, variable air volume system and the boost pump water supply systems.

  • PDF

Phase Behavior of Simvastatin Drug in Mixtures of Dimethyl Ether and Supercritical Carbon Dioxide (디메틸에베르와 초임계이산화탄소의 혼합물에서 Simvastatin 약물의 상거동)

  • Shin, Eun-Kyoung;Oh, Dong-Joon;Lee, Byung-Chul
    • Clean Technology
    • /
    • v.13 no.4
    • /
    • pp.237-243
    • /
    • 2007
  • Phase behavior of the ternary systems of water-insoluble simvastatin drug, which is well known to be effective drugs for hypercholesterolemia therapy, in solvent mixtures of dimethyl ether (DME) and supercritical carbon dioxide was investigated to present a guideline of establishing operating conditions in the particle formation of the drugs by a supercritical anti-solvent recrystallization process utilizing DME as a solvent and carbon dioxide as an anti-solvent. The solubilities of simvastatin in the mixtures of DME and carbon dioxide were determined as functions of temperature, pressure and solvent composition by measuring the cloud points of the ternary mixtures at various conditions using a high-pressure phase equilibrium apparatus equipped with a variable-volume view cell. The solubility of the drug increased as the DME composition in solution and the system pressure increases at a fixed temperature. A lower solubility of the drug was obtained at a higher temperature.

  • PDF

Effect of Blanching Condition on the Chemical Compositon of the Spinach Grown in Winter Greenhouse (데치는 방법이 겨울철 비닐하우스 재배 시금치의 성분에 미치는 영향)

  • 박삼수;장명숙;이규한
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.1
    • /
    • pp.62-67
    • /
    • 1994
  • Spinach has been grown in the bare soil, but nowadays it is generally grown in the greenhouse through four seasons. The kind of spinach is variable and the taste, and nutritive composition of the spinach may be different. In this research, the effect of blanching condition on the chemical composition of winter greenhouse grown spinach was investigated. The mean chemical composition of raw spinach was 3.0% of crude protein, 0.5% of crude fat, 1.0% of crude ash, 12.88mg% of vitamin C, 46.38mg% of phosphorus, 37.95mg% of calcium and 710mg% of oxalic acid. Incresing the balancing time and water volume, the chemical composition contained in spinach was decreased, and especially decreasing range of the oxalic acid was large. When 1% of salt was added, vitamin C was increased.

  • PDF

The Variation of Density and Settlement for Contaminated Sediments During Electrokinetic Sedimentation and Remediation Processes (오염퇴적토에 대한 동전기적 침전 및 정화 공정에서의 시료 밀도 및 침하 변화 특성)

  • Chung, Ha-Ik
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.9
    • /
    • pp.5-14
    • /
    • 2006
  • Generally, the sediments contain significant water, clay, colloidal fraction and contaminants, and can result in soft strata with high initial void, and its potential hazards in subsurface environments exist. Electrokinetic technique has been used in sedimentation for volume reduction of slurry tailing wastes and in remediation for extraction of contaminants from contaminated soils. In this research, the coupled effects of sedimentation and remediation of contaminated sediments are focused using electrokinetic sedimentation and remediation techniques from experimental aspects. A series of laboratory experiments including variable conditions such as initial solid content of the specimen, concentration level of the contaminant, and magnitude of applied voltage are performed with the contaminated sediment specimens mixed with ethylene glycol. Commercially available high specification Kaolin was used to simulate slurried sediment. From the test results, the settlement of specimen increases with increasing of applied voltage and decreasing of solid content and contamination level. The density of specimen increases due to settlement of specimen in the process of electrokinetic sedimentation and decreases due to extraction of organic contaminant in the process of electrokinetic remediation.

Numerical Simulation for Behavior of Debris Flow according to the Variances of Slope Angle (비탈면 경사 변화에 따른 토석류 거동의 수치모의)

  • Kim, Sungduk;Yoon, Ilro;Oh, Sewook;Lee, Hojin;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.6
    • /
    • pp.59-66
    • /
    • 2012
  • The purpose of this study is to estimate the behavior and the mechanism of debris flow on the slope, which has specially various gradient plane. The numerical simulation was performed by using the Finite Differential Element method (FDM) based on the equation for the mass conservation and momentum conservation. The mechanism of flow type for debris flow is divided into three flow types which are stony debris flow, immature debris flow, and turbulent water flow, respectively. First, flow discharge, water flow depth, sediment volume concentration was investigated by variable input of flow discharge at the straight slope angle and two step inclined plane. As the input of flow discharge was decrease, flow discharge and water flow depth was increased, after the first coming debris flow only reached at the downstream. As the input of flow discharge was increased, the curve of flow discharge and flow depth was highly fluctuated. As the results of RMS ratio, the flow discharge and flow depth was lower two step slope angle than the straight slope angle. Second, the behavior of debris flow was investigated by the four cases of gradient degree at the downstream of slope angle. The band width of flow discharge and flow depth for $14^{\circ}$ between $16^{\circ}$ was higher than other gradient degree, and fluctuation curve was continuously high after 10 seconds.

Performance of Fresh and Hardened Ultra High Performance Concrete without Heat Treatment (상온 양생한 초고성능 콘크리트(UHPC)의 경화 전과 후의 성능 관계)

  • Kang, Sung-Hoon;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.23-34
    • /
    • 2014
  • This study investigates the relationship between the performance of fresh and hardened Ultra-High Performance Concrete (UHPC) without heat treatment. The performance of fresh UHPC is determined by the slump flow test related to the fluidity of concrete mixtures, and the air content test. The variables of these tests are the water to binder ratio, superplasticizer dosages and volume fractions of steel fiber. Generally, insufficient fluidity and excessive air contents in concrete mixtures lead to the insufficient packing density related to the performance of harden concrete. The performance of hardened UHPC is determined by the compressive and flexural tensile tests. The results of the fresh UHPC tests show that there is the linear correlation between each variable and the slump flow diameter, and that the slump flow diameter is linearly decreased as the air content ratio increase. Using these results, the formula is developed to predict the fresh performance before mixing UHPC. The results of the hardened UHPC tests show that the hardened performance is not influenced by the air content ratio in the range of 3.2 to 4.2 per cent. However, the flexural tensile strength dominantly influenced by the volume fractions of steel fiber.

Effect of the Application of Residual Food Compost on Growth of Red Pepper(Capsicum annuum L.) and Physicochemical Properties of soil (남은 음식물 퇴비 시용에 따른 토양의 이화학성 변화와 고추생육에 미치는 영향)

  • Yu, Young-Seok;Chang, Ki-Woon;Lee, Ji-Whan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.4
    • /
    • pp.81-88
    • /
    • 2001
  • This experiment was carried out to evaluate the effect of residual food compost application on plant growth and physicochemical properties of soil when residual food compost made from the composting process as part of organic waste recycling was applied in soil as variable rate. The treatments were composed non-fertilizer treatment, control treatment applied with pig compost $20Mg(D.W.)ha^{-1}$, and residual food compost treatments each of applied with 20, 40, 60, $80Mg(D.W.)ha^{-1}$ and were randomized complete block design with three replication. Soil pH after experiment was more increased as more increase application of residual food compost. Other chemical properties of soil including EC were also showed the similar results. The plant growth in treatments applied much of residual food compost at the early growth stage was very damaged and these results were proved at the first growth measurement. Production of the red pepper especially reduced in treatments taken growth demage at the early stage and that of $20Mgha^{-1}$ treatment almost same as control treatment. Bulk density was reduced but porosity was increased according to increase of residual food compost application. Considering the reduction of red pepper production and the demage of growth at the early stage by plenty of salt and water soluble application volume of residual food compost was not permitted over of $30Mgha^{-1}$. Additively, to settle the application volume of residual food compost and to evaluate the plant growth and changes of physicochemical properties of soil, the results taken from continual applying is concluded more important than single application.

  • PDF

A Hydrodynamic Modeling Study to Analyze the Water Plume and Mixing Pattern of the Lake Euiam (의암호 수체 흐름과 혼합 패턴에 관한 모델 연구)

  • Park, Seongwon;Lee, Hye Won;Lee, Yong Seok;Park, Seok Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.488-498
    • /
    • 2013
  • A three-dimensional hydrodynamic model was applied to the Lake Euiam. The lake has three inflows, of which Gongji Stream has the smallest flow rate and poorest water. The dam-storage volume, watershed area, lake shape and discharge type of the Chuncheon Dam and the Soyang Dam are different. Therefore, it is difficult to analyze the water plume and mixing pattern due to the difference of the two dams regarding the amount of outflow and water temperature. In this study, we analyzed the effects of different characteristics on temperature and conductivity using the model appropriate for the Lake Euiam. We selected an integrated system supporting 3-D time varying modeling (GEMSS) to represent large temporal and spatial variations in hydrodynamics and transport of the Lake Euiam. The model represents the water temperature and hydrodynamics in the lake reasonably well. We examined residence time and spreading patterns of the incoming flows in the lake based on the results of the validated model. The results of the water temperature and conductivity distribution indicated that characteristics of upstream dams greatly influence Lake Euiam. In this study, the three-dimensional time variable water quality model successfully simulated the temporal and spatial variations of the hydrodynamics in the Lake Euiam. The model may be used for efficient water quality management.

Prediction of multipurpose dam inflow using deep learning (딥러닝을 활용한 다목적댐 유입량 예측)

  • Mok, Ji-Yoon;Choi, Ji-Hyeok;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.2
    • /
    • pp.97-105
    • /
    • 2020
  • Recently, Artificial Neural Network receives attention as a data prediction method. Among these, a Long Shot-term Memory (LSTM) model specialized for time-series data prediction was utilized as a prediction method of hydrological time series data. In this study, the LSTM model was constructed utilizing deep running open source library TensorFlow which provided by Google, to predict inflows of multipurpose dams. We predicted the inflow of the Yongdam Multipurpose Dam which is located in the upper stream of the Geumgang. The hourly flow data of Yongdam Dam from 2006 to 2018 provided by WAMIS was used as the analysis data. Predictive analysis was performed under various of variable condition in order to compare and analyze the prediction accuracy according to four learning parameters of the LSTM model. Root mean square error (RMSE), Mean absolute error (MAE) and Volume error (VE) were calculated and evaluated its accuracy through comparing the predicted and observed inflows. We found that all the models had lower accuracy at high inflow rate and hourly precipitation data (2006~2018) of Yongdam Dam utilized as additional input variables to solve this problem. When the data of rainfall and inflow were utilized together, it was found that the accuracy of the prediction for the high flow rate is improved.

Hot-water Extraction Condition of Gastrodia elata Blume by Response Surface Methodology (반응표면분석법을 이용한 천마의 열수 추출조건 설정)

  • Kim Seong-Ho;Kim In-Ho;Kang Bok-Hee;Lee Sang-Han;Kim Jong-Hyun;Lee Jin-Man
    • Food Science and Preservation
    • /
    • v.13 no.2
    • /
    • pp.131-137
    • /
    • 2006
  • In order to reduce the damage of effective component during processing, we carried out hot-water extraction monitering in Gastrodia elata Blume by response surface methodology. The extraction con야tions for vanillyl alcohol, vanillin and coumarin were optimized at 91.07, 93.73 and $96.30^{\circ}C$, for 2.64, 2.58 and 3.84 hr, at the concentration of 15.16, 21.56 and 19.88 mL/g, respectively. The optimal condition for extraction of total phenolics was acheved at $98.14^{\circ}C$, 3.20 hr and 18.63 mL/g. This study elicited regression formula for each variable, and superimposed the total optimal conditions of extraction for effective compounds and optimal condition for antioxidant characteristics dividing processing factors. It is shown that the predicted result under the extraction condition as follows: extraction temperature for $90{\sim}100^{\circ}C$, extraction time for $3{\sim}4hr$, and solvent volume of $15{\sim}20mL/g$ of sample.