• Title/Summary/Keyword: Variable Water Volume

Search Result 74, Processing Time 0.023 seconds

Analysis for Efficiency in the Oyster, Mussel Aquaculture Household using SFA (SFA를 이용한 굴, 홍합 양식어가의 효율성 분석)

  • Kim, Tae-Hyun;Park, Cheol-Hyung
    • The Journal of Fisheries Business Administration
    • /
    • v.47 no.2
    • /
    • pp.1-14
    • /
    • 2016
  • This study applied the Stochastic Frontier Analysis to estimate which independent variable affects to efficiency of aquaculture household. This study used wage and facility scale as input variables, sales volume as an output variable to estimate efficiency. Also, the study used region, species, water quality to estimate technical inefficiency factors of the model. The data used for this study were obtained by the operating costs survey using 1:1 interview method. The study selected translog production model with technical inefficiency term estimated as half-normal distribution. In addition, the study used pearson and spearman correlation coefficient among efficiency estimating models. Also, the study analysed differences among estimated efficiencies through t-test, and showed us 0.1793 in species, 0.4677 between Geojae and Masan.

Properties of Flowable High-volume Fly Ash-Cement Composites (다량의 플라이애쉬를 사용한 유동성 시멘트복합체의 특성)

  • 원종필;신유길;안태송
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.105-110
    • /
    • 1998
  • The purpose of this was to examine the used of fly ash as a type of construction material. In this paper the results from a recent study on development of a cement composite utilizing relatively large amount of fly ash are presented. The flowable fly ash-cement sand composite was investigated for strength and flowability characteristics. The independent variable considered were: fly-ash content, sand content, and ratio of water to cementitious materials. Results of this study show that high volume fly-ash composite can be proportioned to obtain 10~15kg/$\textrm{cm}^2$ compressive strength at 28 days. For applications requiring strength between 10kg/$\textrm{cm}^2$ and 15kg/$\textrm{cm}^2$, the mixture with fly ash-cement ratio of 5.6 and sand-cement ratio of 28 with relatively high water content may be used. Slump was held at 25$\pm$1cm for all mixtures produced compressive strength at 28 days were found to range from 5kg/$\textrm{cm}^2$ to 13.7kg/$\textrm{cm}^2$.

  • PDF

A Study on the Accumulation Phenomena of Oxidized Starch in White Water of Closed Fine Papermaking Process (Part 3) -Effect of white water and broke use ratios on the unsteady state of papermaking process- (백상지 공정 폐쇄화에 따른 백수 내 산화전분의 축적 현상에 관한 연구 ( 제 3 보 ) -백수사용량과 파지첨가량 변화에 따른 공정의 비정상상태 변화 -)

  • Ahn, Hyun-Kyun;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.2 s.115
    • /
    • pp.1-8
    • /
    • 2006
  • In this study a process simulation method was used to analyze the accumulation phenomena of anionic starch in the process white water as the closure level of a fine paper making process is increased. A pilot paper machine was used as a model process. Dynamic simulations of the influence of white water usage ratio and uncoated broke addition ratio on the variation of process variable was monitored as a function of time. Results from the dynamic simulations showed that the volume of reservoirs affected the dynamic behavior of the process. The dynamic behavior of flow rate and dissolved starch concentration in process units were different from each other. The speed of the change of dissolved starch concentration in process units was depend on the starting point of the change of dissolved starch concentration, the length of circulation loop, and the volume of reservoirs.

Precipitation Decreases Methane Uptake in a Temperate Deciduous Forest (온대 낙엽 활엽수림에서의 강수량에 따른 메탄 흡수 감소)

  • Khokhar, Nadar Hussain;Park, Jae-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.1
    • /
    • pp.24-34
    • /
    • 2019
  • Soil moisture regulates the fate of methane ($CH_4$) in forest soil via biological and chemical processes. The instant effect of variable precipitation on $CH_4$ uptake is, however, unclear in the forest ecosystems. Here, we measured $CH_4$ flux in a temperate forest soil immediately after variable volume of water applications equivalent to 10, 20 40, and $80mm\;m^{-2}day^{-1}$ precipitation. $CH_4$ uptake was significantly higher when the water was not applied. The $CH_4$ uptake decreased significantly with increasing water application. $CH_4$ uptake was linked with air filled porosity and water filled porosity. $CH_4$ uptake response to actual precipitation intensity was in agreement with $CH_4$ uptake results in this study. $CH_4$ uptake decreased 55% at highest precipitation intensity. Since annual $CH_4$ flux is calculated with interpolation of weekly or biweekly field observations, instant effect of precipitation can mislead the interpolated annual results.

LONG-TERM RESERVOIR SEDIMENT MANAGEMENT CONSIDERING OTHER OPERATIONAL OBJECTIVES

  • Ko, Seok-Ku;Kim, Woo-Gu;Lee, Gwang-Man
    • Water for future
    • /
    • v.35 no.5
    • /
    • pp.43-50
    • /
    • 2002
  • The Yellow River Basin located in the Northern part of China is well-known not only as the seriously limited water sources but the greatest sediment-carrying stream in the world. The observed annual average sediment concentration in this area is $37.6kg/\textrm{mm}^3$, and 3.1% of the water volume is occupied by sediments. Due to the reason, water development has been extremely limited and it has been appeared as one of the most difficult problems in reservoir development and management. The major obstacle to surface water uses is reservoir sedimentation so that it has been strongly requested to seek the method managing sediment by optimal fashion. To solve this problem, KOWACO (Korea Water Resources Corporation) has developed various methods on the optimal reservoir management schemes including sediment management for the Upper Fenhe Basin Reservoir System at the cooperation project with Chinese. Information Variable Dynamic Programming. which is one of them, was developed for the reservoir sediment management and a set of non-dominated solutions are generated to choose the best alternative in water supply and reservoir sediment objective problem.

  • PDF

An Analysis of the Water Supply System with Pressurizing Tank (가압탱크를 이용한 급수시스템의 해석 및 최적화 연구)

  • Lee, T.W.;Kim, T.H.;Choi, D.H.;Kim, S.D.;Kim, J.P.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.2
    • /
    • pp.93-102
    • /
    • 1994
  • It is the goal of this study to provide the essential data for design and operation of optimum water supply system. Experimental and theoretical analyses have been conducted for various parameters, for example, volume and air percent of pressurizing tank, pump speed and pressure range inside tank, etc. Pressure inside tank with time, flow rate, energy consumption rate and pump operation time have been obtained for design and operating parameters to optimize the components and to establish the operating method of system, and therefore to contribute to the development of technology from a point of view of the improvement of quality, the enhancement of system efficiency and the reduction of construction cost.

  • PDF

The Effects of Blouse Types on Ventilation Clothing Microclimate (블라우스내에 형성되는공기층이 의복내환기에 미치는 영향 연구)

  • Park Woo Mee;Choi Chul Ho
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.16 no.2
    • /
    • pp.169-180
    • /
    • 1992
  • The purpose of this study is to investigate the effects of type of clothing microclimate and exercise condition on ventilation. The experimental system employed a trace gas technique of the previous research. Clothing microclimate volume measurement was based on the substitution water technique for inter-clothing air volume. The experimental variables were tested at four levels of clothing microclimate spacing, microclimate shape of the previous research and two levels of exercise conditions. 2, 4, 6 cm ease were added to B/2+4 of basic blouse pattern for the microclimate spacing variable. Each combination of three variables were tested in triplicate. Analysis of variance of experimental variables on vetilation, such as oxygen exchange rate, half time of first order model was conducted. Oxygen exchange rate and half time of first order model are affected by the shape of microclimate air and exercise condition.

  • PDF

A Study on the Hydration Ratio and Autogenous Shrinkage of Low Water/cement Ratio Paste (저물시멘트비 페이스트의 시멘트수화율 및 자기수축에 관한 연구)

  • Hyeon, Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.385-390
    • /
    • 2002
  • Autogenous shrinkage of concrete has been defined as decrease in volume due to hydration cement, not due to other causes such as evaporation, temperature change and external load and so on. For ordinary concretes, autogenous shrinkage is so little compared to the other deformations that it has been dignored. It has recently been proved, however, that autogenous shrinkage considerably increase with decrease in water to cement ratio. And it has been reported that cracking can be caused by autogenous shrinkage, when high- strength concretes were used. In this study, we propose an analytical system to represent autogenous shrinkage in cement paste in order to control crack due to autogenous shrinkage. The system is composed with the hydration model and pore structure model. Contrary to the usual assumption of uniform properties in the hydration progress, the hydration model to refine Tomosawa's represents the situation that inner and outer products are made in cement paste. The pore structure model is based upon the physical phenomenon of ion diffusion in cement paste and chemical phenomenon of hydration in cement particle. The proposed model can predict the pore volume ratio and the pore structure in cement paste under variable environmental conditions satisfactorily The autogenous shrinkage prdiction system with regard to pore structure development and hydration at early ages for different mix-proportions shows a reasonable agreement with the experimental data.

  • PDF

Heat Dissipation of Sealed LED Light Fixtures Using Pulsating Heat Pipe Technology

  • Kim, Hyung-Tak;Park, Hae-Kyun;Bang, Kwang-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.64-71
    • /
    • 2012
  • An efficient cooling system is an essential part of the electronic packaging such as a high-luminance LED lighting. A special technology, Pulsating Heat Pipe (PHP), can be applied to improve cooling of a sealed, explosion-proof LED light fixture. In this paper, the characteristics of the pulsating heat pipes in the imposed thermal boundary conditions of LED lightings were experimentally investigated and a PHP device that works free of alignment angle was investigated for cooling of explosion-proof LED lights. Five working fluids of ethanol, FC-72, R-123, water, and acetone were chosen for comparison. The experimental pulsating heat pipe was made of copper tubes of internal diameter of 2.1 mm, 26 turns. A variable heat source of electric heater and an array of cooling fins were attached to the pulsating heat pipe. For the alignment of the heating part at bottom, an optimum charging ratio (liquid fluid volume to total volume) was about 50% for most of the fluids and water showed the highest heat transfer performance. For the alignment of the heating part on top, however, only R-123 worked in an un-looped construction. This unique advantage of R-123 is attributed to its high vapor pressure gradient. Applying these findings, a cooling device for an explosion-proof type of LED light rated 30 W was constructed and tested successfully.

Ultrasonic Sensor Controlled Sprayer for Variable Rate Liner Applications (초음파센서를 이용한 변량제어 스프레이어)

  • Jeon, Hong-Young;Zhu, Heping
    • Journal of Biosystems Engineering
    • /
    • v.36 no.1
    • /
    • pp.15-22
    • /
    • 2011
  • An experimental variable rate nursery sprayer was developed to adjust application rates for canopy volume in real time. The sprayer consisted of two vertical booms integrated with ultrasonic sensors, and variable rate nozzles coupled with pulse width modulation (PMW) based solenoid valves. A custom-designed microcontroller instructed the sensors to detect canopy size and occurrence and then controlled nozzles to achieve variable application rates. A spray delivery system, which consisted of diaphragm pump, pressure regulator and 4-cycle gasoline engine, offered the spray discharge function. Spray delay time, time adjustment in spray trigger for the leading distance of the sensor, was measured with a high-speed camera, and it was from 50 to 140 ms earlier than the desired time (398 ms) at 3.2 km/h under indoor conditions. Consequently, the sprayer triggered 4.5 to 12.5 cm prior to detected targets. Duty cycles of the sprayer were from 20 to 34 ms for senor-to-canopy (STC) distance from 0.30 to 0.76 m. Outdoor test confirmed that the nozzles were triggered from 290 to 380 ms after detecting tree canopy at 3.2 km/h. The spray rate of the new sprayer was 58.4 to 85.2% of the constant application rate (935 L/ha). Spray coverage was collected at four areas of evergreen canopy by water sensitive papers (WSP), and ranged from 1.9 to 41.1% and 1.8 to 34.7% for variable and constant rate applications, respectively. One WSP area had significant (P < 0.05) difference in mean spray coverage between two application conditions.