• Title/Summary/Keyword: Variable Swash Plate

Search Result 39, Processing Time 0.032 seconds

An experimental study on the control properties of variable compressors for automotive air-conditioning system (자동차 에어컨용 가변압축기의 제어 특성에 관한 실험적 고찰)

  • Kim, Min Jun;Lee, Geon Ho;Park, Ik Seo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.691-696
    • /
    • 2004
  • Recently, it is required that the automotive air conditioning system must keep the cabin temperature comfortable in spite of engine speed, and Improve the fuel consumption during all the seasons. To satisfy these requirements, the variable displacement swash plate type compressor with control pressure valve is developed. In this study, the effects of two type valves, suction pressure control valve and differential pressure control valve, on the performance of swash plate type compressor has been investigated experimentally.

  • PDF

System Modeling of a Bi-directional Outlet Variable Swash Plate Type Axial Piston Pump with Two EPPR Valves (두 개의 EPPR 밸브가 적용된 정/역 가변형 사판식 액셜 피스톤 펌프 시스템 모델링)

  • Kim, Yong-Gil;Kim, Soo-Tae;Ham, Young-Bog;Yun, So-Nam;Son, Ho-Yeon
    • Journal of Drive and Control
    • /
    • v.17 no.1
    • /
    • pp.51-60
    • /
    • 2020
  • This study addresses the modeling of a bi-directional outlet variable swash plate type axial piston pump with two EPPR valves and an analysis of the response characteristics to the angle control of that pump. In this paper, the combination of the EPPR valve and double rod type piston is referred to as the EPPR regulator. The EPPR regulator is compact and inexpensive, and has good responsiveness. Under actual pump operating conditions, because of the various external conditions of the pump, inertia is applied to the swash plate, generating the tilting torque. Also, the tilting torque can delay or shorten the response characteristics of the regulator. So we validated them through the analysis using SimulationX and these results allow users to freely integrate the EPPR regulator into the desired system.

Structural Analysis and Performance Test of Variable Displacement Swash Plate Piston Pumps (가변용량형 사판식 피스톤 펌프의 구조해석 및 성능시험)

  • Lee, Jeong-Sil;Jun, Cha-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.105-113
    • /
    • 2022
  • In this study, a variable displacement swash plate pump supplying high-pressure hydraulic oil to control the hydraulic system of a marine engine was developed. A structural analysis was performed on the main parts of the pump to ensure the structural safety in the design. Using a pump testing equipment, performance characteristics such as no-load flow rate, load flow rate, flow rate according to the swivel angle change, flow rate with lubrication orifice, and response time according to the swivel motion were tested. Consequently, the pump was confirmed to satisfy the required specifications.

A Study on the Flow Characteristics of a Swash-Plate Piston-Pump Inlet (사판식 피스톤 펌프 흡입구의 유동 특성에 관한 연구)

  • Lee, Jeong-Sil;Jun, Cha-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.56-62
    • /
    • 2021
  • In this study, a cavitation occurrence in a piston-pump inlet was investigated by simulating the pressure distribution, according to the inlet shape of a variable-displacement swash-plate piston pump that supplies high-pressure oil to control the hydraulic system of a marine engine. Two types of pump inlets with different shapes were cast into impression models, and the models were reverse-engineered by 3D scanning. Then, the hydraulic-pressure distribution was analyzed through finite-element analysis. The results of the analysis confirmed that cavitation occurs more easily in the inlet with a steeper slope during pump operation because the inlet pressure on the valve plate is lower than that of the other pump with a gentler inlet slope.

Pulsation According to Pre-Compression Sections and Valve Plate Design for a Swash Plate Type Piston Pump (사판식 피스톤 펌프의 밸브 플레이트 설계와 예압에 따른 맥동)

  • Sa, Jin-Woong;Chung, Won-Jee;Bae, Jun-Hyeong;Lee, Jeong-Min
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.89-95
    • /
    • 2016
  • This study investigated the design factors of the opening area in order to consider the kinematic stability of a valve plate, conducting an analysis of the reduction effects of pressure pulsation and flow ripple depending on the design factors, using the $SimulationX^{(R)}$ (Germany) hydraulic analysis program. Further, we performed a structure analysis to confirm the kinematic stability of the valve plate in a swash plate type piston pump, and analyzed the effects of pulsation on a 1-step V-type notch, 2-step V-type notch, and 2-step U-type notch to determine the effects of pulsation reduction. Finally, we show the effectiveness of our proposed design of the pre-compression sections on a valve plate in terms of low pulsation by using the hydraulic analysis program, $SimulationX^{(R)}$.

A Study on the Structural Analysis and Design Verification of Variable Swash Plate Piston Pump Case for Wheeled Armored Vehicle (차륜형 장갑차용 가변형 사판식 피스톤 펌프 케이스의 구조해석 및 설계검증에 관한 연구)

  • Choi, Seong Woong;Kim, Yong Seok;Yang, Soon Yong
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.43-50
    • /
    • 2019
  • The objective of this study was to reverse engineer a swash plate type piston pump mounted on a wheeled armored vehicle and to analyze the structure of the pump case. From the analysis, the weak parts were identified and corrected in the final design. Each element corresponding to the piston pump case was analyzed. The analytical method was given static boundary conditions, load conditions and confirmed displacement, strain, stress, and safety factor. Plastic deformation and damage were also confirmed and the component elements redesigned through structural analysis Structural analysis and vibration analysis were carried out for the components of the piston pump case. The piston pump model was finally modified by structural analysis and vibration analysis results for each component assembly, and a prototype was designed. Durability test and environmental test were carried out and the test results satisfied all of the requirements. Therefore, the analytical method presented in this study can be utilized as a methodology for element component design in the development of various piston pumps.

Simulation on Characteristics of Constant Power Regulator Systems in Variable Displacement Axial Piston Pump (사판식 가변 용량형 액셜 피스톤 펌프의 일정출력 레귤레이터 특성 시뮬레이션)

  • Lee, J.M.;Park, S.H.;Park, Y.H.;Lee, H.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.2
    • /
    • pp.5-12
    • /
    • 2011
  • In this study, modeling and numerical simulations has been performed to investigate performance characteristics of constant power regulator system for swash plate type axial piston pump. The commercial numerical simulation software, AMESim was applied for analyzing the dynamic behavior of constant power regulator system of swash plate axial piston pump. The validity of simulation model of constant power regulator system is verified by comparing simulation results with experiments. Also, the behavior of main components of constant power regulator system such as spool, sleeve and counterbalance piston is investigated using the results of computer simulation.

The Design of Servo Control Mechanism for Swash Plate Type Axial Piston Pump (사판식 피스톤 펌프 서보제어기구 설계)

  • 노종호;함영복;윤소남;최병오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.741-744
    • /
    • 2002
  • The closed circuit pump is applied to control rotating speed and direction of hydraulic motor in hydrostatic transmission. To development of this pump, first of all the servo control regulator has to be designed. Mechanical-hydraulic type servo control mechanism is excellent to be compared with electronic-hydraulic type servo control valve to reliability and economy. In this paper to development positive and negative variable displacement type servo regulator, the hydro-mechanical servo control mechanism is calculated and designed with force balance of pilot piston and position feedback of servo piston.

  • PDF