• Title/Summary/Keyword: Variable Mechanism

Search Result 597, Processing Time 0.029 seconds

Force Chain Stability Analysis in Jamming Mechanism for Variable Stiffness Actuator (가변 강성 엑츄에이터인 재밍 메커니즘의 힘 체인 안정성 분석)

  • Lee, Jeongsu;Cho, Youngjun;Koo, Jachoon
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.326-332
    • /
    • 2019
  • In the case of conventional soft robots, the basic stiffness is small due to the use of flexible materials. Therefore, there is a limitation that the load that can bear is limited. In order to overcome these limitations, a study on a variable stiffness method has been conducted. And it can be seen that the jamming mechanism is most effective in increasing the stiffness of the soft robot. However, the jamming mechanism as a method in which a large number of variable act together is not even theoretically analyzed, and there is no study on intrinsic principle. In this paper, a study was carried out to increase the stability of the force chain to increase the stiffness due to the jamming transition phenomenon. Particle size variables, backbone mechanisms were used to analyze the stability of the force chains. We choose a jamming mechanism as a variable stiffness method of a soft robot, and improve the effect of stiffness based on theoretical analysis, modeling FEM simulation, prototyping and experiment.

Design of Field-Driving Robot with Variable Wheel Mechanism (가변 휠 메커니즘을 가지는 필드 주행 로봇 설계)

  • Lee, Joon-Sung;Kim, Young-Seok;Kim, Kun-Jung;Yu, Kee-Ho
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.3
    • /
    • pp.186-190
    • /
    • 2019
  • When problems occurred in the unstable and/or extreme terrain environment, formal field-driving robots were unable to provide any other options such as the transformation of the wheel and body structure, and so on. For such reason, this paper proposed a novel type of integrated wheel mechanism that can be operated as a conventional driving wheel mode and hybrid wheel-leg mode in order to be negotiated in an unstable terrain environment. The mechanical effect of the proposed variable wheel mechanism was analyzed considering the geometric constraint and power requirement of the actuator for the transformation. In addition, we designed and manufactured the prototype of field-driving robot, which reliably control the variable wheel shape. Finally, the effectiveness of the variable wheel mechanism was verified by preliminary experimental approach.

Variable camber morphing wing mechanism using deployable scissor structure: Design, analysis and manufacturing

  • Choi, Yeeryung;Yun, Gun Jin
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.2
    • /
    • pp.103-117
    • /
    • 2022
  • In this paper, a novel morphing mechanism using a deployable scissor structure was proposed for a variable camber morphing wing. The mechanism was designed through the optimization process so that the rib can form the target airfoils with different cambers. Lastly, the morphing wing was manufactured and its performance was successfully evaluated. The mechanism of the morphing wing rib was realized by a set of deployable scissor structure that can form diverse curvatures. This characteristic of the structure allows the mechanism to vary the camber that refers to the airfoil's curvature. The mechanism is not restrictive in defining the target shapes, allowing various airfoils and overall morphing wing shape to be implemented.

A Fundamental Study on the Development of a Variable Preload Device Using Toggle Joint Mechanism (토글 조인트장치를 이용한 가변예압장치 개발을 위한 기초 연구)

  • Choi, Chi Hyuk;Cha, Na Hyeon;Lee, Choon Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.3
    • /
    • pp.260-265
    • /
    • 2013
  • To increase the machine accuracy by improving the stiffness of spindle bearings, preload was applied to the spindle bearings. The methods of fixed position preload, convertible preload, constant pressure preload, and variable preload are used to apply the preload to the spindle bearing. The previous studies performed by the author of this study were variable preload methods using rubber pressure and centrifugal force based on mechanical systems. This study proposed a toggle joint mechanism that could be applied to variable preload method using centrifugal force and rubber pressure to increase the preload. Also, a finite element analysis was conducted to predict the deformation of the rubber and change of the preload. And the analysis results showed that the preload by the device using rubber pressure only was increased by the toggle joint mechanism using rubber pressure.

Development of Variable Stiffness Soft Robot Hand for Improving Gripping Performance (그리핑 성능 향상을 위한 가변강성 소프트 로봇 핸드 개발)

  • Ham, KiBeom;Jeon, JongKyun;Park, Yong-Jai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.47-53
    • /
    • 2018
  • Various types of robotic arms are being used for industrial purposes, particularly with the small production of multi-products, and the importance of the gripper, which can be used in industrial fields, is increasing. This study evaluated a variable stiffness mechanism gripper that can change the stiffness using the nonlinearity of a flexible material. A prototype of the gripper was fabricated and examined to confirm the change in stiffness. The previous gripper was unable to grip objects in some situations with three variable stiffness mechanism. In addition, these mechanisms were not balanced and rarely rotated when the object was gripped. Therefore, a new type of gripper was needed to solve this problem. Inspired by the movements of the human palm and Venus Flytrap, a new type of a variable stiffness soft robot hand was designed. The possibility of grasping could be increased by interlocking the palm folding mechanism by pulling the tendon attached to the variable stiffness mechanism. The soft robotic hand was used to grasp objects of various shapes and weights more stably than the previous variable stiffness mechanism gripper. This new variable stiffness soft robot hand can be used selectively depending on the application and environment to be used.

Kinematic Analysis of a Continuously Variable Valve Actuation Mechanism with Movable Second Cam Center (2차 캠 중심 이동형 연속가변밸브 구동기구의 기구학 해석)

  • Kim, Do-Joong;Kim, Yong-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.7-15
    • /
    • 2009
  • This paper introduces a new variable valve actuation mechanism with movable second cam center. Valve lift and open duration can be continuously varied according to engine speed and load conditions. A new method to analyze the kinematic relations between the first and second cam profiles and valve motion are also introduced. Because of rocker motion of the second cam, conventional motion conversion program could not be used in this problem. An example shows continuous variations of valve motion and adequate ramp incorporation throughout all valve lift modes. Valve acceleration profile at the high lift mode is similar to that of conventional valvetrains. Contact geometry analysis of the mechanism gives basic information on the load conditions between the components.

Design of a Variable-Stiffness Type Safety Joint for Service Robots (서비스 로봇용 가변강성 형 안전관절의 설계)

  • Jeong, Jae-Jin;Chang, Seung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.128-134
    • /
    • 2009
  • This paper aims to design a variable-stiffness type economical safety joint for service robots. The safety joint was designed to have a passive shock absorbing mechanism for protecting human from a catastrophic collision under service condition of robots. A simple mechanism composed of two action disks for switching the load transfer, a spring and a screw for pre-load was proposed. In order to evaluate the performance of the safety joint a testing platform which can carry out the static and impact tests was also designed and fabricated. From the test results, the designed safety joint was proved to have a variable load-carrying capacity and about 42% impact absorption capacity with simple manipulation of the control screw.

Mobility Improvement of a Jumping Robot using Conical Spring with Variable Length Endtip (가변길이 엔드팁을 갖는 원추형 스프링을 이용한 도약로봇의 이동성 향상)

  • Kim, Ki-Seok;Kim, Byeong-Sang;Song, Jae-Bok;Yim, Chung-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1108-1114
    • /
    • 2009
  • Mobility is one of the most important features for a guard robot since it should be operated in rough places. A wheel-based mobile robot capable of jumping is an appropriate structure for a guard robot because it can easily satisfy the requirements for small guard robots. The jumping robot can reach a higher place more rapidly than other locomotion methods. This research proposes a small robot equipped with the jumping mechanism based on the conical spring with the variable length endtip. The variable length endtip enables the independent control of the jump force and jump angle which are related to the jump height and jump distance, respectively. Various experiments demonstrated that the proposed jumping mechanism can provide the independent control of jump force and jump angle, and improve the mobility of a small robot to overcome an obstacle. Furthermore, a combination of the jumping mechanism and the PSD sensor to measure the distance to the step enable the jumping robot to autonomously climb stairs.

Spring Connected Size-Variable Rigid Block Model for Automatic Synthesis of a Planar Linkage Mechanism (평면 링크기구 자동 설계를 위한 스프링 연결 사이즈 가변 블록 모델)

  • Kim, Bum-Suk;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.822-826
    • /
    • 2008
  • A linkage mechanism is a device to convert an input motion into a desired output motion. Traditional linkage mechanism designs are based on trial and error approaches so that size or shape changes of an original mechanism often result in improper results. In order to resolve these problems, an improved automatic mechanism synthesis method that determines the linkage type and dimensions by using an optimization method during the synthesis process has been proposed. For the synthesis, a planar linkage is modeled as a set of rigid blocks connected by zero-length translational springs with variable stiffness. In this study, the sizes of rigid blocks were also treated as design variables for more general linkage synthesis. The values of spring stiffness and the size of rigid block yielding a desired output motion at the end-effecter are found by using an optimization method.

  • PDF