• 제목/요약/키워드: Variable Excitation

검색결과 136건 처리시간 0.023초

Wind velocity field during thunderstorms

  • Ponte, Jacinto Jr.;Riera, Jorge D.
    • Wind and Structures
    • /
    • 제10권3호
    • /
    • pp.287-300
    • /
    • 2007
  • Wind action is a factor of fundamental importance in the structural design of light or slender constructions. Codes for structural design usually assume that the incident mean wind velocity is parallel to the ground, which constitutes a valid simplification for frequent winds caused by meteorological phenomena such as Extratropical Storms (EPS) or Tropical Storms. Wind effects due to other phenomena, such as thunderstorms, and its combination with EPS winds in so-called squall lines, are simply neglected. In this paper a model that describes the three-dimensional wind velocity field originated from a downburst in a thunderstorm (TS) is proposed. The model is based on a semi empirical representation of an axially-symmetrical flow line pattern that describes a stationary field, modulated by a function that accounts for the evolution of the wind velocity with time. The model allows the generation of a spatially and temporally variable velocity field, which also includes a fluctuating component of the velocity. All parameters employed in the model are related to meteorological variables, which are susceptible of statistical assessment. A background wind is also considered, in order to account for the translational velocity of the thunderstorm, normally due to local wind conditions. When the translation of the TS is caused by an EPS, a squall line is produced, causing the highest wind velocities associated with TS events. The resulting vertical velocity profiles were also studied and compared with existing models, such as the profiles proposed by Vicroy, et al. (1992) and Wood and Kwok (1998). The present model predicts horizontal velocity profiles that depend on the distance to the storm center, effect not considered by previous models, although the various proposals are globally compatible. The model can be applied in any region of interest, once the relevant meteorological variables are known, to simulate the excitation due to TS winds in the design of transmission lines, long-span crossings, cable-stayed bridges, towers or similar structures.

Experimental verification of leverage-type stiffness-controllable tuned mass damper using direct output feedback LQR control with time-delay compensation

  • Chu, Shih-Yu;Yeh, Shih-Wei;Lu, Lyan-Ywan;Peng, Chih-Hua
    • Earthquakes and Structures
    • /
    • 제12권4호
    • /
    • pp.425-436
    • /
    • 2017
  • Vibration control using a tuned mass damper (TMD) is an effective technique that has been verified using analytical methods and experiments. It has been applied in mechanical, automotive, and structural applications. However, the damping of a TMD cannot be adjusted in real time. An excessive mass damper stroke may be introduced when the mass damper is subjected to a seismic excitation whose frequency content is within its operation range. The semi-active tuned mass damper (SATMD) has been proposed to solve this problem. The parameters of an SATMD can be adjusted in real time based on the measured structural responses and an appropriate control law. In this study, a stiffness-controllable TMD, called a leverage-type stiffness-controllable mass damper (LSCMD), is proposed and fabricated to verify its feasibility. The LSCMD contains a simple leverage mechanism and its stiffness can be altered by adjusting the pivot position. To determine the pivot position of the LSCMD in real time, a discrete-time direct output-feedback active control law that considers delay time is implemented. Moreover, an identification test for the transfer function of the pivot driving and control systems is proposed. The identification results demonstrate the target displacement can be achieved by the pivot displacement in 0-2 Hz range and the control delay time is about 0.1 s. A shaking-table test has been conducted to verify the theory and feasibility of the LSCMD. The comparisons of experimental and theoretical results of the LSCMD system show good consistency. It is shown that dynamic behavior of the LSCMD can be simulated correctly by the theoretical model and that the stiffness can be properly adjusted by the pivot position. Comparisons of experimental results of the LSCMD and passive TMD show the LSCMD with less demand on the mass damper stroke than that for the passive TMD.

H-TMD with hybrid control method for vibration control of long span cable-stayed bridge

  • Han, Bing;Yan, Wu Tong;Cu, Viet Hung;Zhu, Li;Xie, Hui Bing
    • Earthquakes and Structures
    • /
    • 제16권3호
    • /
    • pp.349-358
    • /
    • 2019
  • Long span cable-stayed bridges are extremely vulnerable to dynamic excitations such as which caused by traffic load, wind and earthquake. Studies on cable-stayed bridge vibration control have been keenly interested by researchers and engineers in design new bridges and assessing in-service bridges. In this paper, a novel Hybrid-Tuned Mass Damper (H-TMD) is proposed and a hybrid control model named Mixed Logic Dynamic (MLD) is employed to build the bridge-H-TMD system to mitigate the vibrations. Firstly, the fundamental theory and modeling process of MLD model is introduced. After that, a new state switching design of the H-TMD and state space equations for different states are proposed to control the bridge vibrations. As the state switching designation presented, the H-TMDs can applied active force to bridge only if the structural responses are beyond the limited thresholds, otherwise, the vibrations can be reduced by passive components of dampers without active control forces provided. A new MLD model including both passive and active control states is built based on the MLD model theory and the state switching design of H-TMD. Then, the case study is presented to demonstrate the proposed methodology. In the case study, the control scheme with H-TMDs is applied for a long span cable-stayed bridge, and the MLD model is established and simulated with earthquake excitation. The simulation results reveal that the suggested method has a well damping effect and the established system can be switched between different control states as design excellently. Finally, the energy consumptions of H-TMD schemes are compared with that of Active Tuned Mass Damper (ATMD) schemes under variable seismic wave excitations. The compared results show that the proposed H-TMD can save energy than ATMD.

A New Approach for Detection of Gear Defects using a Discrete Wavelet Transform and Fast Empirical Mode Decomposition

  • TAYACHI, Hana;GABZILI, Hanen;LACHIRI, Zied
    • International Journal of Computer Science & Network Security
    • /
    • 제22권2호
    • /
    • pp.123-130
    • /
    • 2022
  • During the past decades, detection of gear defects remains as a major problem, especially when the gears are subject to non-stationary phenomena. The idea of this paper is to mixture a multilevel wavelet transform with a fast EMD decomposition in order to early detect gear defects. The sensitivity of a kurtosis is used as an indicator of gears defect burn. When the gear is damaged, the appearance of a crack on the gear tooth disrupts the signal. This is due to the presence of periodic pulses. Nevertheless, the existence of background noise induced by the random excitation can have an impact on the values of these temporal indicators. The denoising of these signals by multilevel wavelet transform improves the sensitivity of these indicators and increases the reliability of the investigation. Finally, a defect diagnosis result can be obtained after the fast transformation of the EMD. The proposed approach consists in applying a multi-resolution wavelet analysis with variable decomposition levels related to the severity of gear faults, then a fast EMD is used to early detect faults. The proposed mixed methods are evaluated on vibratory signals from the test bench, CETIM. The obtained results have shown the occurrence of a teeth defect on gear on the 5th and 8th day. This result agrees with the report of the appraisal made on this gear system.

RVDT용 DSP 기반 위상 자동보정 디지털 신호처리기 FPGA 구현 (FPGA Implementation of RVDT Digital Signal Conditioner with Phase Auto-Correction based on DSP)

  • 김성미;서연호;진유린;이민웅;조성익;이종열
    • 한국정보통신학회논문지
    • /
    • 제21권6호
    • /
    • pp.1061-1068
    • /
    • 2017
  • RVDT(Rotary Variable Differential Transformer)는 각도 변위를 측정하는 센서로써 출력 신호는 DSBSC-AM(Double SideBand Suppressed Carrier AM) 신호이기 때문에 출력 신호로부터 각도 변위를 알아내기 위하여 DSBSC-AM 복조 과정이 필요하다. 본 논문에서는 DSBSC-AM 신호의 복조기인 코스타스 루프를 수정하여 RVDT 출력 신호로부터 각도 변위를 추출하는 DADC(Digital Angle to DC)를 FPGA(Field Programmable Gate Array)로 구현하였다. 본 논문에서 설계된 DADC는 4선식과 5선식 RVDT에 적용가능하며, 코스타스 루프의 사용으로 기존의 아날로그 신호처리기와는 달리 외부의 소자를 사용하지 않고 RVDT 입력여기신호와 출력신호 사이의 위상 차이를 정확하게 보정할 수 있다. 또한 선형성 향상을 위하여 디지털 신호처리 기법이 적용되어 DADC는 기존의 아날로그 신호처리기의 선형성 오차 0.05%보다 적은 0.035%의 선형성 오차를 보였다. 구현된 DADC의 기능과 성능 테스트는 상용 RVDT 센서와 ADC(Analog to Digital Converter), 아날로그 출력단으로 구성된 통합 실험환경을 구성하여 진행하였다.

건축구조물의 지진해석에서 좌표축의 설정에 따른 보정계수 산정법 (Scale-Up Factor for Seismic Analysis of Building Structure for Various Coordinate Systems)

  • 유일향;이동근;고현;김태호
    • 한국지진공학회논문집
    • /
    • 제11권5호
    • /
    • pp.33-47
    • /
    • 2007
  • 실무에서 지진해석법으로 널리 쓰이는 방법은 등가정적해석법과 응답스펙트럼해석법이다. 이 중 등가정적해석법에 의한 밑면전단력은 구조물의 주축을 해석좌표축에 어떻게 배치하는가와 상관없이 일관된 값을 나타낸다. 그러나 응답스펙트럼해석은 해석좌표 축에 구조물의 주축을 다르게 배치하여 해석을 수행하면 밑면전단력이 각기 다르게 발생한다. 이는 엔지니어가 구조물을 설계함에 있어 구조물의 주축을 해석좌표축에 어떻게 설정했는지에 따라 설계부재력이 모두 달라질 수 있음을 뜻한다. 또한 응답스펙트럼해석은 지진을 가한 방향의 직각방향에서 적지 않은 응답이 발생하는 경우가 생긴다. 한방향 해석에 대한 X와 Y축을 따라 분리되는 이러한 양방향 응답은 보정계수 산정시 쓰이는 밑면전단력을 작게 만들며 이는 결과적으로 보정계수를 크게하여 과다설계의 우려가 생긴다. 내진설계시 발생하는 이러한 문제점을 해결하기 위하여 본 논문에서는 수평의 강성 차이에 따라 구조물을 크게 세 가지(양방향 대칭 구조물, 한방향 비대칭구조물, 양방향 비대칭구조물)로 분류하여 각각의 경우에 대하여 간단한 모델을 선정하고 구조물의 주축을 회전시켜가면서 지진해석을 수행하였다. 각 경우의 예제구조물이 가지는 동적특성과 설계부재력을 살펴보았다. 현재 실무에서 적용되는 보정계수 산정법에 의한 설계부재력과 앞선 문제들을 해결하고자 본 논문에서 제안하는 새로운 보정계수 산정법에 의한 설계부재력을 비교하여 제안하는 보정계수 산정법의 효율성을 검토하였다. 그 결과로 새로 제안된 보정계수 산정법에 의하여 설계부재력을 산정하는 것이 내진설계시 엔지니어들이 겪을 수 있는 혼란을 덜어주며 경제적인 부재설계가 가능함을 알 수 있었다.