• Title/Summary/Keyword: Variable Displacement Hydraulic Pump

Search Result 31, Processing Time 0.021 seconds

Pressure Control of Electro-Hydraulic Variable Displacement Pump Using Genetic Algorithms (GA를 이용한 전기유압식 가변펌프의 압력제어)

  • 안경관;현장환;조용래;오범승
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.48-55
    • /
    • 2004
  • This study presents a genetic algorithm-based method fur optimizing control parameters in the pressure control of electro-hydraulic pump with variable displacement. Genetic algorithms are general-purpose optimization methods based on natural evolution and genetics and search the optimal control parameters maximizing a measure that evaluates the performance of a system. Four control gains of the PI-PD cascade controller for an electro-hydraulic pressure control system are optimized using a genetic algorithm in the experiment. Optimized gains are confirmed by inspecting the fitness distribution which represents system performance in gain spaces. It is shown that genetic algorithm is an efficient scheme in optimizing control parameters of the pressure control of electro-hydraulic pump with variable displacement.

A Study on the Energy Saving Hydraulic Control System using Variable Displacement Hydraulic Pump/Motor (가변 유압 펌프/모터를 이용한 유압 제어 시스템의 에너지 절감에 관한 연구)

  • 조용래;안경관
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.100-108
    • /
    • 2003
  • This paper proposes a flywheel hybrid vehicle to solve the energy crisis problem by the exhaustion of a fossil fuel and air pollution for the conservation of environment. The proposed flywheel hybrid vehicle is composed of an accumulator and a flywheel as the energy generation and storage component and three variable displacement hydraulic pump/motors as the energy transfer devices. Flywheel has the characteristics of high energy density and easy energy absorption and consumption. The effectiveness of the energy-saving of the proposed flywheel hybrid vehicle is verified by simulation using Matlab/simulink. First of ail, analytical modeling for the flywheel hybrid vehicle is presented and simulations are performed based on the experimental efficiency data of a variable displacement pump/motor. The results of the simulation show that the effect of energy savings is realized by the proposed hybrid vehicle in 3 different city driving patterns.

Modeling Technique for a Positive and Negative Variable Displacement Swash Plate Hydraulic Piston Pump in a Multibody Dynamics and Multi-Physics Co-Simulation Environment (다물체 동역학과 다중물리 연동 시뮬레이션 환경에서 정/역 가변용량형 사판식 피스톤 펌프의 모델링 기법)

  • Jang, Jin Hyun;Jeong, Heon Sul
    • Journal of Drive and Control
    • /
    • v.16 no.1
    • /
    • pp.36-44
    • /
    • 2019
  • Variable displacement swash plate piston pump analysis requires electric, hydraulics and dynamics which are similar to the one's incorporated in the complex fluid power and mechanical systems. The main variable capacity for the swash plate piston pumps, hydraulics or simple kinematic (swash plate degree, piston displacement) models are analyzed using AMESim, a multi-physics analysis program. AMESim is a multi-physics hydraulic analysis program that is considered good for the environment but not appropriate for environmental analysis for multibody dynamics. In this study, the analytical model of the swash plate type hydraulic piston pump variable capacity is modeled by combining the hydraulic part and the dynamic part through co-simulation of multibody dynamics program (Virtual.lab Motion) and multi-physics analysis (AMESim). This paper describes the whole modeling analysis method on the mechanical analysis of the multi-body dynamics program and how the hydraulic analysis in multi-physics analysis program works. This paper also presents a methodology for analyzing complex fluid power systems.

A Study on Energy Saving Hydraulic Cylinder System Using Hydraulic Transformer (유압 트랜스포머를 이용한 유압 실린더의 에너지 절감에 관한 연구)

  • Lee, Min-Su;Cho, Yong-Rae;Yoon, Hong-Soo;Ahn, Kyoung-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.2
    • /
    • pp.49-56
    • /
    • 2008
  • In order to reduce energy consumption, secondary controlled system has been applied to many types of equipments. In lifting equipments or press machines using hydraulic cylinder, a hydraulic transformer is used as a control component instead of a valve for motion control and a component for recovering potential energy of load. The transformer is a combination of a variable displacement pump/motor as a secondary controlled element and a fixed displacement pump/motor. In this paper the effect of transformer is studied. Multiple closed loop controllers with displacement feedback of variable pump/motor, speed feedback and position feedback of cylinder are used. The efficiency and energy consumption when cylinder is driven up and down is calculated by simulation. Simulation results show that considerable energy saving is achieved by choosing load ratio, circuit type and supply pressure.

Multi-function Control of Hydraulic Variable Displacement Pump with EPPR Valve (전자비례감압밸브를 이용한 가변용량형 유압펌프의 다기능 제어)

  • Jung, Dong-Soo;Kim, Hyong-Eui;Kang, E-Sok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.160-170
    • /
    • 2006
  • If hydraulic pump controlled by mechanical type regulator has more than one control function, the construction of regulator will be very complicated and control performance falls drastically. It is difficult to have more than one control function for hydraulic pump controlled by electronic type hydraulic valve due to the inconsistency of controllers. This paper proposes a multi-function control technique which controls continuously flow, pressure and power by using EPPR(Electronic Proportional Pressure Reducing) valve in swash plate type axial piston pump. Nonlinear mathematical model is developed from the continuity equation for the pressurized control volume and the torque balance for the swash plate motion. To simplify the model we make the linear state equation by differentiating the nonlinear model. A reaction spring is installed in servo cylinder to secure the stability of the control system. We analyze the stability and disturbance by using the state variable model. Finally, we review the control performances of flow, pressure and power by tests using PID controller.

A Design Compensation for Stable Flow/Pressure Control of Variable Displacement Type Piston Pump (가변용량형 피스톤 펌프의 안정적인 유량/압력제어를 위한 설계보상)

  • Jung, Dong-Soo;Kim, Hyoung-Eui;Kang, E-Sok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.165-174
    • /
    • 2007
  • Variable displacement type piston pump uses various controllers for controlling more than one state quantity like pressure, flow, power, and so on. These controllers need the mathematical model closely expressing dynamic behavior of pump for analyzing the stability of control systems which usually use various kinds of state variables. This paper derives the nonlinear mathematical model for variable displacement type piston pump. This model consists of two 1st oder differential equations by the continuity equations and one 2nd oder differential equation by the motion equation. To simplify the model we obtain the linear state variable model by differentiating the three nonlinear equations. And we verify this linearized model by comparison of simulation with experimentation and analyze the stability for the flow/pressure control. Finally this paper suggests the design compensation to ensure the stability of the systems.

The Design of Servo Control Mechanism for Swash Plate Type Axial Piston Pump (사판식 피스톤 펌프 서보제어기구 설계)

  • 노종호;함영복;윤소남;최병오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.741-744
    • /
    • 2002
  • The closed circuit pump is applied to control rotating speed and direction of hydraulic motor in hydrostatic transmission. To development of this pump, first of all the servo control regulator has to be designed. Mechanical-hydraulic type servo control mechanism is excellent to be compared with electronic-hydraulic type servo control valve to reliability and economy. In this paper to development positive and negative variable displacement type servo regulator, the hydro-mechanical servo control mechanism is calculated and designed with force balance of pilot piston and position feedback of servo piston.

  • PDF

A Study on Torque Efficiency Test Method of Tandem Pump (탠덤 펌프의 토크효율 시험방법에 관한 연구)

  • 유진산;함영복;김성동
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.282-285
    • /
    • 1997
  • The torque efficiency of oil hydraulic pump is an important factor for it's performance characteristics. A study on the performance test method of oil hydraulic pump is based on test standard, but there is to be desired an study for double or tandem type oil hydraulic piston pump. So in this study present a test method on the tandem pump for torque efficiency and analysis method of the results.

  • PDF

Structural Analysis and Performance Test of Variable Displacement Swash Plate Piston Pumps (가변용량형 사판식 피스톤 펌프의 구조해석 및 성능시험)

  • Lee, Jeong-Sil;Jun, Cha-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.105-113
    • /
    • 2022
  • In this study, a variable displacement swash plate pump supplying high-pressure hydraulic oil to control the hydraulic system of a marine engine was developed. A structural analysis was performed on the main parts of the pump to ensure the structural safety in the design. Using a pump testing equipment, performance characteristics such as no-load flow rate, load flow rate, flow rate according to the swivel angle change, flow rate with lubrication orifice, and response time according to the swivel motion were tested. Consequently, the pump was confirmed to satisfy the required specifications.