• Title/Summary/Keyword: Variable Damper

Search Result 133, Processing Time 0.025 seconds

Mechanism Design of Optical Pickup Actuator for Fast Access of Optical Disk Drive (광디스크 드라이브의 고속 액세스를 위한 광픽업 액추에이터 메커니즘 설계)

  • 박준혁;이상헌;백윤수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.109-119
    • /
    • 2002
  • In this paper, mechanism design of optical pickup actuator for fast access is proposed. This actuator is composed of moving magnet type actuator and moving coil type actuator for tracking and fine motion, respectively. Moving magnet type tracking actuator is configurated by two permanent magnets and four air-core solenoids. Additional damper by induced current in tracking actuator can reduce the transient vibration between the coarse seeking servo and fine seeking servo. Variable stiffness can be acquired by applying current to air-core solenoid simply. This actuator can achieve fast access by these additional damper and stiffness. Performance of this actuator is predicted through the FEM, simulation and simple experiment. Settling time for transient vibration is reduced to 14.7% according to simulation result.

A Development of the Simulation Program for Launching Performance of a Passenger Car equipped Continuously Variable Transmission (무단변속기 장착차량의 발진성능 해석을 위한 시뮬레이션 프로그램의 개발)

  • 김정윤;이장무;여인욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.157-166
    • /
    • 1999
  • This paper describes the launching characteristics of a passenger car using a Push-Belt type Continuously Variable Transmission(CVT) which equipped a wet type multi-plate clutch asa starting device and a solid flywheel with a torsional damper for a torsional coupling device. To reduce the torsional vibration of the drive-line , some torsional coupling devices were used for the passenger car equipped CVT having the clutch as a starting device especially . In this study, we developed the computer simulation program to investigate the launching characteristics of a passenger car equipped CVT using the mathematical models of this system. For the mathematical models of the vehicle, the CVT, the we type multi-plate clutch and the torsional damper, we obtained the specification and the necessary data through the reverse engineering of those. For the verification of our analysis, we performed the test of prototype car with different throttle positions at road and dynamometer. The launching characteristics of a passenger car considered here an acceleration performance and an ascending performance.

  • PDF

A Study on the State feedback with Integral Control for a Variable Air Volume Unit (가변 풍량 유닛에 대한 적분기를 가진 상태 궤환 제어에 관한 연구)

  • 박세화
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.2
    • /
    • pp.9-14
    • /
    • 2000
  • State feedback with integral control for a variable air volume(VAV) unit which is recently taken notice of for the energy efficiency and saving in the building is studied to investigate the performance of the digital control methodology for the possible practical application. The digital controller which acquires the targat zone temperature and the air flow rate of the supplied air to the zone controls the opening of the damper in the VAV unit. Simulation results are performed for the conditions including reference changes and external thermal variations. In the simulation. simplified conditioned zone and the damper actuator modelling is considered. and relationships between controller gain Parameters and the system dynamics are investigated.

  • PDF

Analysis of a Variable Damper and Pneumatic Spring Suspension for Bicycle Forks using Hydraulic-Pneumatic Circuit Model (유공압 회로를 이용한 자전거 포크용 가변댐퍼-공압스프링 서스펜션의 해석)

  • Chang, Moon Suk;Choi, Young Hyu;Kim, Su Tae;Choi, Jae Il
    • Journal of Drive and Control
    • /
    • v.16 no.1
    • /
    • pp.7-13
    • /
    • 2019
  • The objective of this study was to present a damped pneumatic suspension, a bike fork suspension, which can adapt itself to incoming road excitations is presented in this paper. It consists of a hydraulic damper and a pneumatic spring in parallel with a linear spring. The study also proposed a variable and switchable orifice, in the hydraulic damper, to select appropriate damping property. Hydraulic-pneumatic circuit model for the bike fork suspension was established based on AMESim, in order to predict its performance. In addition, elastic-damping characteristics of the fork such as spring constant and viscous damping coefficient were computed and compared, for validation, with those evaluated by experiment using the universal test machine. Through simulation analysis and test, it was established that the hydraulic-pneumatic circuit model is effective and practical for development of future MTB suspensions.

A Study on Semi-active Vibration Isolation Table using a Nonlinear Analysis of the MR Damper (MR 댐퍼의 비선형해석을 이용한 반능동형 제진대에 관한 연구)

  • Kim, DoYoung;Chun, ChongKeun;Kwon, YoungChul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.11
    • /
    • pp.861-867
    • /
    • 2014
  • In this study, a semi-active isolator was constructed from applying a MR damper that used the MR fluid to an isolator. The parameter identification was also performed to determine the characteristics of this semi-active isolator during which the least squares method and the auxiliary variable method were applied to produce a value closest to the true value. In addition, the MR damper's nonlinear damping force was closely analyzed to greatly reduce the range of error. Based on this analysis, it was discovered that the parameter tended to increase with more electric current. Such analysis of the dynamic properties of semi-active isolator proved that constructing an isolator that provides a more stable operation could be achieved.

Piezoelectric friction dampers for earthquake mitigation of buildings: design, fabrication, and characterization

  • Chen, Genda;Garrett, Gabriel T.;Chen, Chaoqiang;Cheng, Franklin Y.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.539-556
    • /
    • 2004
  • In this paper, the design, fabrication and characterization of a piezoelectric friction damper are presented. It was sized with the proposed practical procedure to minimize the story drift and floor acceleration of an existing 1/4-scale, three-story frame structure under both near-fault and far-field earthquakes. The design operation friction force in kip was numerically determined to range from 2.2 to 3.3 times the value of the peak ground acceleration in g (gravitational acceleration). Experimental results indicated that the load-displacement loop of the damper is nearly rectangular in shape and independent of the excitation frequency. The coefficient of friction of the damper is approximately 0.85 when the clamping force on the damper is above 400 lbs. It was found that the friction force variation of the damper generated by piezoelectric actuators with 1000 Volts is approximately 90% of the expected value. The properties of the damper are insensitive to its ambient temperature and remain almost the same after being tested for more than 12,000 cycles.

Performance Analysis of Smart Impact Damper (지능형 완충기의 특성 해석)

  • ;;Y.T. Choi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.323-327
    • /
    • 2001
  • Electrorheological(ER) and magnetorheological(MR) fluids have a unique ability to increase the dynamic yield stress of the fluid substantially when electric or magnetic field is applied. Controllable fluids such as ER and MR fluids have received considerable attention as several components of engineering devices. One of them is a smart impact damper using ER/MR fluids. Impact damper system can be used in the joint mechanism of railroad vehicle, protection equipment of elevator's drop, and launch equipment of aircraft. This paper presents the results of an analytical study of the performance of a smart impact damper to suppress vibration during impact excitation. The damping capabilities of MR impact damper for variable applied current are analyzed using Bingham model under sudden impact load.

  • PDF

Controllable Squeeze Film Damper Using an Electromagnet (전자석을 이용한 가제어형 스퀴즈필름댐퍼)

  • 안영공;하종룡;양보석;김동조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.510-513
    • /
    • 2003
  • The paper represents the stability of a rotor system with the squeeze film damper (SFD) using an electromagnet. The electromagnet is installed in the inner damper of the SFD. The proposed SFD has basically property of a conventional SFD and variable damping property according to variation of the applied electric current. Therefore, when the applied current controlled, the whirling vibration of the rotor system can be effectively reduced in a wide operational speed range. In the present work, the performance of the SFD was experimentally investigated according to changing the magnetic field strength. When the applied current increased, the whirling amplitude greatly reduced and the damping ratio also increased.

  • PDF

Controllable Squeeze Film Damper Using an Electromagnet (전자석을 이용한 가제어형 스퀴즈필름댐퍼)

  • 안영공;하종룡;양보석;김동조
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.6
    • /
    • pp.484-489
    • /
    • 2003
  • The paper represents stability of a rotor system with the squeeze film damper (SFD) using an electromagnet. The electromagnet is installed in the inner damper of the SFD. The proposed SFD has basically the property of a conventional SFD and variable damping property according to variation of the applied electric current. Therefore, when the applied current Is controlled, the whirling vibration of the rotor system can be effectively reduced in a wide operational speed range. In the present work, the performance of the SFD was experimentally investigated according to changing the magnetic field strength. As the applied current increased, damping ratios increased, while whirling amplitudes greatly reduced.

Semi-Active Control of a Suspension System with a MR Damper of a Large-sized Bus (MR 댐퍼를 이용한 대형 버스 현가장치의 반능동 제어)

  • Yoon, Ho-Sang;Moon, Il-Dong;Kim, Jae-Won;Oh, Chae-Youn;Lee, Hyung-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.683-690
    • /
    • 2012
  • In this work, the semi-active control of a large-sized bus suspension system with an MR damper was studied. An MR damper model that can aptly describe the hysteretic characteristics of an MR damper was adopted. Parameter values of the MR damper model were suitably modified by considering the maximum damping force of a passive damper used in the suspension system of a real large-sized bus. In addition, a fuzzy logic controller was developed for semi-active control of a suspension system with an MR damper. The vertical acceleration at the attachment point of the MR damper and the relative velocity between sprung and unsprung masses were used as input variables, while voltage was used as the output variable. Straight-ahead driving simulations were performed on a road with a random road profile and on a flat road with a bump. In straight-ahead driving simulations, the vertical acceleration and pitch angle were measured to compare the riding performance of a suspension system with a passive damper with that of a suspension with an MR damper. In addition, a single lane change simulation was performed. In the simulation, the lateral acceleration and roll angle were measured in order to compare the handling performance of a suspension system using a passive damper with that of a suspension system using an MR damper.