• Title/Summary/Keyword: Variable Damper

Search Result 133, Processing Time 0.025 seconds

Mathematical Modelling of Happiness and its Nonlinear Analysis (행복의 수학적 모델링과 비선형 해석)

  • Kim, Soon-Whan;Choi, Sun-Koung;Bae, Young-Chul;Park, Young-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.6
    • /
    • pp.711-717
    • /
    • 2014
  • Happiness has been studied in sociology and psychology as a matter of grave concern. In this paper the happiness model that a new second -order systems can be organized equivalently with a Spring-Damper-Mass are proposed. This model is organized a 2-dimensional model of identically type with Duffing equation. We added a nonlinear term to Duffing equation and also applied Gaussian white noise and period sine wave as external stimulus that is able to cause of happiness. Then we confirm that there are random motion, periodic motion and chaotic motion according to parameter variation in the new happiness model.

Vibration control of an SDOF structure using semi-active tuned mass damner (준능동 TMD를 이용한 단자유도 구조물의 진동제어)

  • Kim, Hyun-Su;Lee, Dong-Guen
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.424-431
    • /
    • 2006
  • Many types of tuned mass dampers (TMDs), such as active TMDs, multiple TMDs, hybrid TMDs etc., have been studied to effectively reduce the dynamic responses of a structure subjected to various types of dynamic loads. In this study, we replace a passive damper by a semi-active tuned mass damper to improve the control performance of conventional TMDs (STMD). An idealized variable damping device is used as semi-active dampers. These semi-active dampers can change the properties of TMDs in real time based on the dynamic responses of a structure. The control performance of STMD is investigated with respect to various types of excitation by numerical simulation. Groundhook control algorithm is used to appropriately modulate the damping force of semi-active dampers. The control effectiveness between STMD and a conventional passive TMD, both under harmonic and random excitations, is evaluated and compared for a single-degree-of-freedom (SDOF) structure. Excitations are applied to the structure as a dynamic force and ground motion, respectively. The numerical studies showed that the control effectiveness of STMD is significantly superior to that of the passive TMD, regardless of the type of excitations.

  • PDF

An Experimental Study on Multi-Fault Detection and Diagnosis Analysis of HVAC System (HVAC 시스템의 중복고장 검출을 위한 실험적 연구)

  • Cho Sung-Hwan;Hong Young-Ju;Yang Hooncheul;Ahn Byung-Cheon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.932-941
    • /
    • 2004
  • The objective of this study is to detect the multi-fault of HVAC system using a new pattern classification technique. To classify the effect of single-fault in determining the pattern, supply air temperature, OA-damper, supply fan, and air flowrate were chosen as experimental parameters. The combination of supply temperature, flow rate, supply fan and OA-damper were chosen as multi-fault conditions. Three kinds of patterns were introduced in the analysis of multi-fault problem. To solve multi-fault problem, the new pattern classification technique using residual ratio analysis was introduced to detect the multi-fault as well as single-fault. The residual ratio could diagnose single-fault or multi-fault into several patterns.

Family of smart tuned mass dampers with variable frequency under harmonic excitations and ground motions: closed-form evaluation

  • Sun, C.;Nagarajaiah, S.;Dick, A.J.
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.319-341
    • /
    • 2014
  • A family of smart tuned mass dampers (STMDs) with variable frequency and damping properties is analyzed under harmonic excitations and ground motions. Two types of STMDs are studied: one is realized by a semi-active independently variable stiffness (SAIVS) device and the other is realized by a pendulum with an adjustable length. Based on the feedback signal, the angle of the SAIVS device or the length of the pendulum is adjusted by using a servomotor such that the frequency of the STMD matches the dominant excitation frequency in real-time. Closed-form solutions are derived for the two types of STMDs under harmonic excitations and ground motions. Results indicate that a small damping ratio (zero damping is the best theoretically) and an appropriate mass ratio can produce significant reduction when compared to the case with no tuned mass damper. Experiments are conducted to verify the theoretical result of the smart pendulum TMD (SPTMD). Frequency tuning of the SPTMD is implemented through tracking and analyzing the signal of the excitation using a short time Fourier transformation (STFT) based control algorithm. It is found that the theoretical model can predict the structural responses well. Both the SAIVS STMD and the SPTMD can significantly attenuate the structural responses and outperform the conventional passive TMDs.

Fuzzy Control of Smart TMD using Multi-Objective Genetic Algorithm (다목적 유전자알고리즘을 이용한 스마트 TMD의 퍼지제어)

  • Kang, Joo-Won;Kim, Hyun-Su
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.69-78
    • /
    • 2011
  • In this study, an optimization method using multi-objective genetic algorithm(MOGA) has been proposed to develop a fuzzy control algorithm that can effectively control a smart tuned mass damper(TMD). A 76-story benchmark building subjected to wind load was selected as an example structure. The smart TMD consists of 100kN MR damper and the natural period of the smart TMD was tuned to the first mode natural period of the example structure. Damping force of MR damper is controlled to reduce the wind-induced responses of the example structure by a fuzzy logic controller. Two input variables of the fuzzy logic controller are the acceleration of 75th floor and the displacement of the smart TMD and the output variable is the command voltage sent to MR damper. Multi-objective genetic algorithm(NSGA-II) was used for optimization of the fuzzy logic controller and the acceleration of 75th story and the displacement of the smart TMD were used as objective function. After optimization, a series of fuzzy logic controllers which could appropriately reduce both wind responses of the building and smart TMD were obtained. Based on numerical results, it has been shown that the control performance of the smart TMD is much better than that of the passive TMD and it is even better than that of the sample active TMD in some cases.

Damping Performance Evaluation of Hysteretic Strip Damper with Curvature (곡률이 있는 이력형 스트립 댐퍼의 감쇠 성능 평가)

  • Jae Won Lee;Dong Baek Kim;Yong Gon Kim;Jeong Ho Choi;Jong Hoon Kim
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.572-581
    • /
    • 2023
  • Purpose: The purpose of this study is to improve the irregularity of the stress-strain curve and to ensure accuracy when calculating the damping effect by preventing members from moving in the off-plane direction due to eccentricity when loads are applied. Method: The specifications of the steel strips used in this study are the same, but the curvature of the strips to constitute each damper is different. Each steel strip with different curvature was arranged in an triangle, three dampers with different curvature were made, and repeated load tests were conducted, and the amount of energy dissipation was calculated to measure the performance of the damper. Result: The amount of energy dissipation significantly decreases compared to the case where there is no initial curvature, and the change in the test energy dissipation amount according to the size of the curvature is not large, and the presence or absence of the hyperbolic rate is considered an important variable. Conclusion: The period is about 78.7% longer from T=0.3 to T=0.536sec, and the response spectrum acceleration is reduced from Sa=0.54g to Sa=0.229g, so the damping effect of the damper is sufficient.

Development of Variable Voltage Sensing for Identification of Dynamic Characteristics of TLCDs (동조액체기둥감쇠기의 동적특성을 파악하기 위한 가변전압측정 시스템 개발)

  • Jang, Seok-Jung;Kim, Jun-Hee;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.275-281
    • /
    • 2015
  • In this study, vertical motion of a Tuned Liquid Column Damper(TLCD) is measured by a variable voltage measurement system in the electric field and design parameters of the TLCD are determined. First, nonlinear damping term of the TLCD is replaced as the equivalent viscous damping term. The natural frequency and damping ratio of dynamic characteristics of the TLCD are verified. In addition, a novel liquid level measurement system is developed for measuring vertical motion of the TLCD. For the experimental achievement, experimental characterizations of natural frequency and damping ratio of the TLCD are undertaken utilizing the developed variable voltage sensing. Also, shake table testing is performed to determine the dynamic characteristics of the TLCD. As a result, the feasibility of the proposed liquid level measurement system is verified by comparison with the capacitive type wavemeter.

An Experimental Study on Motions of two Pin-jointed Multi-floating Bodies (Pin-joint 연결된 다수 부유체의 운동에 대한 실험적 연구)

  • Lee, Seung-Chul;Bae, Sung-Yong;Goo, Ja-Sam
    • Journal of Power System Engineering
    • /
    • v.20 no.3
    • /
    • pp.5-10
    • /
    • 2016
  • The structure of the variable liquid column oscillator(VLCO) is analogous to that of the tuned liquid column damper used to suppress oscillatory motion in large structures like tall buildings and cargo ships. VLCO is using the technology which absorbs high potential energy made by process of accelerated motions effect of air spring by installation of inner air chamber. So, the application of VLCO can improve the efficiency of energy than that of wave energy converters made in Pelamis Company. In this research, experiments were performed for the models which have two different liquid column sizes. In order to find out the biggest motion response, two major conditions are taken into account. Two conditions are to open(or close) the valves and to differentiate the height of the liquid column.

Experimental study on motions of VLCO for wave power generation (2. Multiple floating bodies) (파력발전용 가변수주진동장치의 운동에 대한 실험적 연구 (2. 다수 부유체))

  • Lee, Seung-Chul;Goo, Ja-Sam
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.27-31
    • /
    • 2013
  • The structure of a variable liquid column oscillator(VLCO) is analogous to that of the tuned liquid column damper used to suppress oscillatory motion in large structures like tall buildings and cargo ships. The VLCO is a system for absorbing the high kinetic energy of the accelerated motions of multiple floating bodies using an air-spring effect produced the installation of inner air chambers. Thus, a VLCO can improve the energy efficiency of the activating object type of wave energy converters made by the Pelamis Company. In this research, an experiment was performed in two cases: with the top valves closed and open. The floating bodies were connected by hinges. The effect of the internal flow was estimated by comparing the results for the closed and open valves.

Development of Practical Semi-active Suspension Control System

  • Takahashi, Hideaki;Zhang, Feifei;Mishima, Kiyoshi;Ito, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.278-281
    • /
    • 2003
  • The focus of this research is to realize the function which is equivalent to the active suspension system, with controlling semi-active suspension through the attenuation of power variable damper in lower cost and smaller energy. Actually some semi-active suspension systems have been adopted, but they are not sufficient in performance. The authors intended to develop more effective and practical system and applied the optimal control technique. The results of experiments with practical suspension system showed a degree of improvement of comfortableness.

  • PDF