• Title/Summary/Keyword: Vaporization time

Search Result 88, Processing Time 0.026 seconds

Thermoelectric properties of hot pressed polycrystalline $Bi_2Te_3-Bi_2Se_3$ (가압소결된 다결정 $Bi_2Te_3-Bi_2Se_3$ 열전재료의 열전특성)

  • Hwang, C.W.;Hong, I.G.;Paik, D.K.;Choi, S.C.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.4
    • /
    • pp.363-369
    • /
    • 1994
  • Bimuth telluride base thermoelectrics are prepared by AC current applied hot pressing method. It is possible to minimize the defects arising from the vaporization of Te, thanks to the very short processing time compared to the single crystal growing method. The optimum conditions for the AC applied hot pressing of 95 mol% $Bi_2Te_3-5 mol% Bi_2Se_3$ thermoelectrics are sintering at $400^{\circ}C$, for 2 minutes, under 1500 kgf/$\textrm{cm}^2$, with the particle size of $125 to 250 {\mu}m$, range of powder. The resultant Z value (figure of merit) was $2.2{\times}10^{-3}/K$.

  • PDF

Preparation of Conductive PEDOT-PSMA Hybrid Thin Films Using Simultaneous Co-vaporized Vapor Phase Polymerization (동시-공증발 기상 중합을 이용한 전도성 PEDOT-PSMA 박막 제조)

  • Nodora, Kerguelen Mae;Yim, Jin-Heong
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.330-335
    • /
    • 2018
  • A new approach for the fabrication of organic-organic conducting composite thin films using simultaneous co-vaporization vapor phase polymerization (SC-VPP) of two or more monomers that have different polymerization mechanisms (i.e., oxidation-coupling polymerization and radical polymerization) was reported for the first time. In this study, a PEDOT-PSMA composite thin film consisting of poly(3,4-ethylenedioxythiophene)(PEDOT) and poly(styrene-co-maleic anhydride)(PSMA) was prepared by SC-VPP process. The preparation of organic-organic conductive composite thin films was confirmed through FT-IR and $^1H-NMR$ analyses. The surface morphology analysis showed that the surface of PEDOT-PSMA thin film was rougher than that of PEDOT thin film. Therefore, PEDOT-PSMA exhibited lower electrical conductivity than that of PEDOT. But the conductivity can be improved by adding 2-ethyl-4-methyl imidazole as a weak base. The contact angle of PEDOT-PSMA was about $50^{\circ}$, as compared to $62^{\circ}$ for PEDOT. The demonstrated methodology for preparing an organic-organic conductive hybrid thin film is expected to be useful for adjusting intrinsic conductive polymer (ICP)'s surface properties such as mechanical, optical, and roughness properties.

The Characteristic Study on the Extraction of a Co Ion in the Metal Ion Implanter (금속이온 주입기에서의 Co 이온의 인출 특성 연구)

  • Lee, Hwa-Ryun;Hong, In-Seok;Trinh, Tu Anh;Cho, Yong-Sub
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.236-243
    • /
    • 2009
  • Proton Engineering Frontier Project (PEFP) has supplied the metal ions to users by using an installed metal ion implanter of 120 keV. At present a feasibility study is being performed for a cobalt ion implantation. For a cobalt ion extraction we studied to sustain the high temperature($648^{\circ}C$) for metal ions vaporization from a cobalt chloride powder by using an alumina crucible in the ion source. The temperature condition of the crucible was satisfied with the plasma generation at the arc current of 120V and EHC power of 250W. The extracted beam current of $Co^+$ ions was dependent on the arc current in the plasma. The maximum beam current was $100{\mu}A$ at 0.18A of the arc current. The 3 peak currents of the extracted ions such as $Co^+$, $CoCl^+$ and $Cl^+$ were obtained by adjusting a mass analyzing magnet and the $Co^+$ ion beam peak current fraction as around 70% in the sum of the peak currents. The fluence of the implanted cobalt ions at the $10{\mu}A$ of the beam current and 90 minutes of the implantation time into an aluminum sample as measured around $1.74{\times}10^{17}#/cm^2$ by a quantitative analysis method of RBS (Rutherford Backscattering Spectrometry).

DIAGNOSTICS OF PLASMA INDUCED IN Nd:YAG LASER WELDING OF ALUMINUM ALLOY

  • Kim, Jong-Do;Lee, Myeong-Hoon;Kim, Young-Sik;Seiji Katayama;Akira Matsunawa
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.612-619
    • /
    • 2002
  • The dynamic behavior of Al-Mg alloys plasma was very unstable and this instability was closely related to the unstable motion of keyhole during laser irradiation. The keyhole fluctuated both in size and shape and its fluctuation period was about 440 ${\mu}{\textrm}{m}$. This instability has been estimated to be caused by the evaporation phenomena of metals with different boiling point and latent heats of vaporization. Therefore, the authors have conducted the spectroscopic diagnostics of plasma induced in the pulsed YAG laser welding of Al-Mg alloys in air and argon atmospheres. In the air environment, the identified spectra were atomic lines of Al, Mg, Cr, Mn, Cu, Fe and Zn, and singly ionized Mg line, as well as strong molecular spectrum of AlO, MgO and AIH. It was confirmed that the resonant lines of Al and Mg were strongly self-absorbed, in particular in the vicinity of pool surface. The self-absorption of atomic Mg line was more eminent in alloys containing higher Mg. These facts showed that the laser-induced plasma was relatively a low temperature and high density metallic vapor. The intensities of molecular spectra of AlO and MgO were different each other depending on the power density of laser beam. Under the low power density irradiation condition, the MgO band spectra were predominant in intensity, while the AlO spectra became much stronger in higher power density. In argon atmosphere the band spectra of MgO and AlO completely vanished, but AlH molecular spectra was detected clearly. The hydrogen source was presumably the hydrogen solved in the base Metal, absorbed water on the surface oxide layer or H$_2$ and $H_2O$ in the shielding gas. The temporal change in spectral line intensities was quite similar to the fluctuation of keyhole. The time average plasma temperature at 1 mm high above the surface of A5083 alloy was determined by the Boltzmann plot method of atomic Cr lines of different excitation energy. The obtained electron temperature was 3, 280$\pm$150 K which was about 500 K higher than the boiling point of pure aluminum. The electron number density was determined by measuring the relative intensities of the spectra1lines of atomic and singly ionized Magnesium, and the obtained value was 1.85 x 1019 1/㎥.

  • PDF

Desorption of organic Compounds from the Simulated Soils by Soil Vapor Extraction (인공토양으로부터 토양증기추출법에 의한 유기화합물의 탈착 현상에 관한 실험 연구)

  • 이병환;이종협
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.2
    • /
    • pp.101-114
    • /
    • 1998
  • Soil vapor extraction (SVE) is known to be an effective process to remove the contaminants from the soils by enhancing the vaporization of organic compounds using forced vapor flows or applying vacuum through soils. Experiments are carried out to investigate the effects of the organic contaminants, types of soils, and water contents on the removal efficiency with operating time. In the study, simulated soils include the glass bead which has no micropore, sand and molecular sieve which has a large volume of micropores. As model organic pollutants, toluene, methyl ethyl ketone, and trichloroethylene are selected. Desorption experiments are conducted by flowing nitrogen gas. Under the experimental conditions, it is found that there are linear relationships between logarithm of removal efficiency and logarithm of number of pore volumes. The number of pore volumes are defined as the total amount of air flow through the soil column divided by the pore volume of soil column. For three organic compounds studied, the removal rate is slow for no water content, while the number of pore volumes for removal of organic compounds are notably reduced for water contents up to 37%. For the removal of dense organic compound, such as trichloroethylene, a large number of pore volumes are needed. Also, the effects of the characteristics of simulated soils on the removal efficiency of organic compounds are studied. After the characterization of soil surface, porosity of soil columns and types of contaminants, the results could provide a basis for the design of SVE process.

  • PDF

Treatment of Liquid Waste Containing Highly Concentrated Ethylenediaminetetraaceticacid by Using Underwater Electrical Discharge (수중 전기방전을 이용한 에틸렌디아민테트라아세트산 폐액의 처리)

  • Jo, Jin-Oh;Mok, Young-Sun;Kang, Duk-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.5
    • /
    • pp.564-570
    • /
    • 2007
  • This study investigated the treatment of liquid waste containing highly concentrated iron(III)-ethylenediaminetetraaceticacid (Fe(III)-EDTA) of 70,000 mg/L by an underwater electrical discharge process using low voltage and high current. When AC voltage is applied to the discharging electrode with the other electrode grounded, the temperature of the liquid waste around the discharging electrode rapidly increases, and at the same time, hydrogen and oxygen gases are formed at the electrode as a result of electrochemical reactions. Ultimately, gases formed by vaporization of water and electrochemical reactions cover the electrode. Since the liquid waste is electrically conductive, it elongates the ground electrode up to the border of the gas layer, where electrical discharge occurs. Without hydrogen peroxide, electrical discharge was able to remove about 50% of Fe(III)-EDTA. As the concentration of hydrogen peroxide added increased, the removal efficiency of Fe(III)-EDTA increased. When the molar ratio of hydrogen peroxide to the initial Fe(III)-EDTA was higher than 24.7, more than 80 g of Fe(III)-EDTA was removed with an energy of 1 kWh. A comparison between tungsten and steel electrodes showed that electrode material did not affect the Fe(III)-EDTA removal. In the present underwater electrical discharge process, the removal of Fe(III)-EDTA was completed within 30 min at molar ratios of hydrogen peroxide to the initial Fe(III)-EDTA higher than 24.7.

A Fluid Analysis Study on Centrifugal Pump Performance Improvement by Impeller Modification (원심펌프 회전차 Modification시 성능개선에 관한 유동해석 연구)

  • Lee, A-Yeong;Jang, Hyun-Jun;Lee, Jin-Woo;Cho, Won-Jeong
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.2
    • /
    • pp.1-8
    • /
    • 2020
  • Centrifugal pump is a facility that transfers energy to fluid through centrifugal force, which is usually generated by rotating the impeller at high speed, and is a major process facility used in many LNG production bases such as vaporization seawater pump, industrial water and fire extinguishing pump using seawater. to be. Currently, pumps in LNG plant sites are subject to operating conditions that vary depending on the amount of supply desired by the customer for a long period of time. Pumps in particular occupy a large part of the consumption strategy at the plant site, and if the optimum operation condition is not available, it can incur enormous energy loss in long term plant operation. In order to solve this problem, it is necessary to identify the performance deterioration factor through the flow analysis and the result analysis according to the fluctuations of the pump's operating conditions and to determine the optimal operation efficiency. In order to evaluate operation efficiency through experimental techniques, considerable time and cost are incurred, such as on-site operating conditions and manufacturing of experimental equipment. If the performance of the pump is not suitable for the site, and the performance of the pump needs to be reduced, a method of changing the rotation speed or using a special liquid containing high viscosity or solids is used. Especially, in order to prevent disruptions in the operation of LNG production bases, a technology is required to satisfy the required performance conditions by processing the existing impeller of the pump within a short time. Therefore, in this study, the rotation difference of the pump was applied to the ANSYS CFX program by applying the modified 3D modeling shape. In addition, the results obtained from the flow analysis and the curve fitting toolbox of the MATLAB program were analyzed numerically to verify the outer diameter correction theory.

Continuous Process for the Etching, Rinsing and Drying of MEMS Using Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 미세전자기계시스템의 식각, 세정, 건조 연속 공정)

  • Min, Seon Ki;Han, Gap Su;You, Seong-sik
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.557-564
    • /
    • 2015
  • The previous etching, rinsing and drying processes of wafers for MEMS (microelectromechanical system) using SC-$CO_2$ (supercritical-$CO_2$) consists of two steps. Firstly, MEMS-wafers are etched by organic solvent in a separate etching equipment from the high pressure dryer and then moved to the high pressure dryer to rinse and dry them using SC-$CO_2$. We found that the previous two step process could be applied to etch and dry wafers for MEMS but could not confirm the reproducibility through several experiments. We thought the cause of that was the stiction of structures occurring due to vaporization of the etching solvent during moving MEMS wafer to high pressure dryer after etching it outside. In order to improve the structure stiction problem, we designed a continuous process for etching, rinsing and drying MEMS-wafers using SC-$CO_2$ without moving them. And we also wanted to know relations of states of carbon dioxide (gas, liquid, supercritical fluid) to the structure stiction problem. In the case of using gas carbon dioxide (3 MPa, $25^{\circ}C$) as an etching solvent, we could obtain well-treated MEMS-wafers without stiction and confirm the reproducibility of experimental results. The quantity of rinsing solvent used could be also reduced compared with the previous technology. In the case of using liquid carbon dioxide (3 MPa, $5^{\circ}C$, we could not obtain well-treated MEMS-wafers without stiction due to the phase separation of between liquid carbon dioxide and etching co-solvent(acetone). In the case of using SC-$CO_2$ (7.5 Mpa, $40^{\circ}C$), we had as good results as those of the case using gas-$CO_2$. Besides the processing time was shortened compared with that of the case of using gas-$CO_2$.