DOI QR코드

DOI QR Code

The Characteristic Study on the Extraction of a Co Ion in the Metal Ion Implanter

금속이온 주입기에서의 Co 이온의 인출 특성 연구

  • Published : 2009.05.30

Abstract

Proton Engineering Frontier Project (PEFP) has supplied the metal ions to users by using an installed metal ion implanter of 120 keV. At present a feasibility study is being performed for a cobalt ion implantation. For a cobalt ion extraction we studied to sustain the high temperature($648^{\circ}C$) for metal ions vaporization from a cobalt chloride powder by using an alumina crucible in the ion source. The temperature condition of the crucible was satisfied with the plasma generation at the arc current of 120V and EHC power of 250W. The extracted beam current of $Co^+$ ions was dependent on the arc current in the plasma. The maximum beam current was $100{\mu}A$ at 0.18A of the arc current. The 3 peak currents of the extracted ions such as $Co^+$, $CoCl^+$ and $Cl^+$ were obtained by adjusting a mass analyzing magnet and the $Co^+$ ion beam peak current fraction as around 70% in the sum of the peak currents. The fluence of the implanted cobalt ions at the $10{\mu}A$ of the beam current and 90 minutes of the implantation time into an aluminum sample as measured around $1.74{\times}10^{17}#/cm^2$ by a quantitative analysis method of RBS (Rutherford Backscattering Spectrometry).

양성자기반공학기술개발사업단에서는 설치된 금속이온주입기를 이용하여 금속이온의 인출 시험 중에 있으며 120keV의 금속 이온주입이 가능하다. 현재 코발트 이온 주입의 타당성 확인을 위한 특성시험을 수행하고 있다. 이온원에 알루미나 도가니를 설치하여 분말 코발트 염화물을 고온($648^{\circ}C$) 가열에 의한 증기화로 인하여 플라즈마 방전이 되도록 하였다. 아크전압 120V, EHC 출력 250W에서 코발트 이온을 인출하기 위한 플라즈마를 발생하고 유지할 수 있었다. 코발트 이온 빔 전류는 플라즈마 내 아크전류에 의존하였으며 0.18A일 때 최대 빔전류 $100{\mu}A$를 얻을 수 있었다. 질량분리전자석에 의해서 $Co^+$$CoCl^+$, $Cl^+$ 이온의 첨두 빔 전류 비율을 확인하였고 전체 이온 대비 $Co^+$ 이온의 비율이 70% 수준을 유지함을 알 수 있었다. $Co^+$ 이온을 알루미늄 시료에 빔전류 $10{\mu}A$, 90분 동안 이온주입 하여 RBS(Rutherford Backscattering Spectrometry)분석법으로 $1.74{\times}10^{17}#/cm^2$의 이온량을 확인하였다.

Keywords

References

  1. Chulmin Choi, Daehoon Hong, Andrew I. Gapin, and Sungho Jin, IEEE transactions on magnetics, 43, 6, 2121-2123 (2007) https://doi.org/10.1109/TMAG.2007.892640
  2. Anders S., Anders A., Brown I., Kong F., and Mclarnon F, Surface & Coatings Techology, ISSN 0257-8972
  3. Lavrentiev Vasily Vacik and Jiri Naramoto Hiroshi, Journal of Applied Physics A, 92, Issue 3, 673-680 (2008) https://doi.org/10.1007/s00339-008-4615-y
  4. M. Gilliot, A. En Naciri, L. Johann, J.P Stoquert, J.J. Grob, and D. Muller, Journal of Applied Physics, 101, 014319 (2007) https://doi.org/10.1063/1.2405740
  5. J R Tucker, C Wang, and T-C Shen, Nanotechology, 7, 275-287 (1996) https://doi.org/10.1088/0957-4484/7/3/018
  6. J. H. Freeman and G. Sidenius, Nuclear Instruments and Methods, 107, 477-492 (1973) https://doi.org/10.1016/0029-554X(73)90383-2
  7. Bernhard Wolf, Handbook of Chemistry and Physics, (CRC Press), 1973-1974
  8. J.S. Lee, Y.S. Cho, J.Y. Kim, and B.H. Choi, Journal of the Korean Physical Society, 52, 3, 727-732 (2008) https://doi.org/10.3938/jkps.52.727
  9. http://www.srim.org
  10. http://publish.uwo.ca/-wlennard/downoad.htm