• 제목/요약/키워드: Vapor-Solid growth

검색결과 104건 처리시간 0.033초

Solid State Cesium Ion Beam Sputter Deposition

  • Baik, Hong-Koo
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1996년도 The 9th KACG Technical Annual Meeting and the 3rd Korea-Japan EMGS (Electronic Materials Growth Symposium)
    • /
    • pp.5-18
    • /
    • 1996
  • The solid state cesium ion source os alumino-silicate based zeolite which contains cerium. The material is an ionic conductor. Cesiums are stably stored in the material and one can extract the cesiums by applying electric field across the electrolyte. Cesium ion bombardment has the unique property of producing high negative ion yield. This ion source is used as the primary source for the production of a negative ion without any gas discharge or the need for a carrier gas. The deposition of materials as an ionic species in the energy range of 1.0 to 300eV is recently recognized as a very promising new thin film technique. This energetic non-thermal equilibrium deposition process produces films by “Kinetic Bonding / Energetic Condensation" mechansim not governed by the common place thermo-mechanical reaction. Under these highly non-equilibrium conditions meta-stable materials are realized and the negative ion is considered to be an optimum paeticle or tool for the purpose. This process differs fundamentally from the conventional ion beam assisted deposition (IBAD) technique such that the ion beam energy transfer to the deposition process is directly coupled the process. Since cesium ion beam sputter deposition process is forming materials with high kinetic energy of metal ion beams, the process provider following unique advantages:(1) to synthesize non thermal-equilibrium materials, (2) to form materials at lower processing temperature than used for conventional chemical of physical vapor deposition, (3) to deposit very uniform, dense, and good adhesive films (4) to make higher doposition rate, (5) to control the ion flux and ion energy independently. Solid state cesium ion beam sputter deposition system has been developed. This source is capable of producing variety of metal ion beams such as C, Si, W, Ta, Mo, Al, Au, Ag, Cr etc. Using this deposition system, several researches have been performed. (1) To produce superior quality amorphous diamond films (2) to produce carbon nitirde hard coatings(Carbon nitride is a new material whose hardness is comparable to the diamond and also has a very high thermal stability.) (3) to produce cesiated amorphous diamond thin film coated Si surface exhibiting negative electron affinity characteristics. In this presentation, the principles of solid state cesium ion beam sputter deposition and several applications of negative metal ion source will be introduced.

  • PDF

빛의 간섭현상을 이용한 증기용착 성장속도 측정법의 실험적 연구 (Optical(Interferometric) Measurements of Vapor Deposition Growth Rate and Dew Points in Combustion Gases)

  • 김상수;송영훈
    • 대한기계학회논문집
    • /
    • 제10권3호
    • /
    • pp.343-348
    • /
    • 1986
  • 본 연구는 이와 같은 필요성에 의해 빛의 간섭현상을 이용하여 액체막이 부차 적인 유동을 일으키기 이전에 용착성장속도를 정량적으로 측정할 수 있었고, 터어빈 날개의 부식에 직접적으로 문제를 일으키는 황산나트륨과 황산칼륨의 용착성장속도를 측정하였다. 본 연구는 종래 액체막의 성장속도만을 빛의 간섭현상을 이용하여 측정 해오던 측정범위를 광원으로 사용된 레이저의 편광상태, 굴절율, 입사각등의 변화에 따른 간섭신호의 비교연구를 통해 고체상태막의 성장속도 및 막이 기화되어 증발되는 현상도 측정하였다. 따라서 증기상태의 무기염이 금속표면에 용착될 때 적용해온 Rosner의 이론을 실험결과와 비교할 수 있었고 응축된 상태로 증기에 표함되어 있는 경우와 이슬점(dew point:표면에 더 이상 용착이 일어나지 못하는 표면온도)의 해석에 보다 확장된 개념들을 도입할 수 있었다.

Self Growth of Silica Nanowires on a Si/SiO2 Substrate

  • Jeong, Hann-Ah;Seong, Han-Kyu;Choi, Heon-Jin
    • 한국세라믹학회지
    • /
    • 제45권3호
    • /
    • pp.142-145
    • /
    • 2008
  • The growth of amorphous silica nanowires by on-site feeding of silicon and oxygen is reported. The nanowires were grown on a nickel-coated oxidized silicon substrate without external silicon or oxygen sources. Transmission electron microscopy observation revealed that the nanowires, which have diameters of less than 50 nm and a length of several micrometers, were grown using a traditional vapor-liquid-solid mechanism. Blue photoluminescence was observed from these nanowires at room temperature. An approach to grow nanowires without external precursors may be useful when integrating nanowires into devices structures. This can benefit the fabrication of nanowire-based nanodevices.

열 산화를 이용한 TiO2 나노선의 성장에 미치는 O2/N2 가스비의 영향 (Effect of the O2/N2 Ratio on the Growth of TiO2 Nanowires via Thermal Oxidation)

  • 이근형
    • 한국재료학회지
    • /
    • 제25권10호
    • /
    • pp.543-546
    • /
    • 2015
  • $TiO_2$ nanowires were grown by thermal oxidation of TiO powder in an oxygen and nitrogen gas environment at $1000^{\circ}C$. The ratio of $O_2$ to $N_2$ in an ambient gas was changed to investigate the effect of the gas ratio on the growth of $TiO_2$nanowires. The oxidation process was carried out at different $O_2$/$N_2$ ratios of 0/100, 25/75, 50/50 and 100/0. No nanowires were formed at $O_2$/$N_2$ ratios of less than 25/75. When the $O_2$/$N_2$ ratio was 50/50, nanowires started to form. As the gas ratio increased to 100/0, the diameter and length of the nanowires increased. The X-ray diffraction pattern showed that the nanowires were $TiO_2$ with a rutile crystallographic structure. In the XRD pattern, no peaks from the anatase and brookite structures of $TiO_2$were observed. The diameter of the nanowires decreased along the growth direction, and no catalytic particles were detected at the tips of the nanowires which suggests that the nanowires were grown with a vapor-solid growth mechanism.

VLS growth of ZrO2 nanowhiskers using CVD method

  • 백민기;박시정;정진환;최두진
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.149-149
    • /
    • 2016
  • Ceramic is widely known material due to its outstanding mechanical property. Besides, Zirconia(ZrO2) has a low thermal conductivity so it is advantage in a heat insulation. Because of these superior properties, ZrO2 is attracted to many fields using ultra high temperature for example vehicle engines, aerospace industry, turbine, nuclear system and so on. However brittle fracture is a disadvantage of the ZrO2. In order to overcome this problem, we can make the ceramic materials to the forms of ceramic nanoparticles, ceramic nanowhiskers and these forms can be used to an agent of composite materials. In this work, we selected Au catalyzed Vapor-Liquid-Solid mechanism to synthesize ZrO2 nanowhiskers. The ZrO2 whiskers are grown through Hot-wall Chemical Vapor Deposition(Hot wall CVD) using ZrCl4 as a powder source and Au film as a catalyst. This Hot wall CVD method is known to comparatively cost effective. The synthesis condition is a temperature of $1100^{\circ}C$, a pressure of 760torr(1atm) and carrier gas(Ar) flow of 500sccm. To observe the morphology of ZrO2 scanning electron microscopy is used and to identify the crystal structure x-ray diffraction is used.

  • PDF

PECVD에 의한 DLC 박막의 성장과 그 특성 조사 (The Growth of Diamond-Like-Carbon (DLC) Film by PECVD and the Characterization)

  • 조재원;김태환;김대욱;최성수
    • 한국진공학회지
    • /
    • 제7권3호
    • /
    • pp.248-254
    • /
    • 1998
  • PECVD(Plasma Enhanced Chemical Vapor Deposition) 방법을 이용하여 비정질 고 상 탄소 박막의 하나인 유사 다이아몬드(Diamond-Like-Carbon; DLC) 박막을 증착하였다. FT-IR Spectroscopy와 Raman Scattering 등을 통해 박막의 구조적 특징을 조사하였는데, 박막은 microcrystalline diamond domain과 graphitelike carbon domain들이 수소화된 $sp^3$사 면체 구조의 비정질 탄소에 의해 그물 구조로 연결되어진 것으로 보인다. 이러한 추정은 I-V 특성 조사의 결과와도 좋은 일치를 보이는데, 특히 I-V조사에서는 전류의 갑작스러운 증가가 관측되어졌으며 이것은 graphitelike carbon domin들간의 전자 tunneling 현상으로 이해되어진다. 그리고 대단히 얇은 탄소 박막에 대한 Raman산란 조사에서는 증착 초기 상 태에 $\beta$-SiC층이 형성되어지는 것을 확인할 수 있었다.

  • PDF

Changes of Smoke Components and Smoke Odor by Far Infra-red Radiation in a Closed Room

  • Hwang, Keon-Joong;Rhee, Moon-Soo;Ra, Do-Young
    • 한국연초학회지
    • /
    • 제20권2호
    • /
    • pp.198-204
    • /
    • 1998
  • This study was conducted to evaluate the effect of far IR radiation for the elimination of sidestream smoke components in a closed room. The measurements covered particle sizes of 13.8-542.5 nm, particle concentration, TSP, UVPM, FPM, solanesol, and the following gases and vapor components of smoke: carbon dioxide, carbon monoxide, nicotine, and 3-ethenyl-pyridine. Also, the changes of smoke odor strength by far IR radiation were tested by using the electronic nose system. There was no difference between control and far IR radiation in changes of the concentration of $CO_2$ and CO. The concentrations of TSP, UVPM, FPM, solanesol, nicotine, and 3-ethenylpyridine were reduced by far IR radiation. The growth and diminishing rate of RSP diameter was accelerated by far IR radiation compared with control. There was a little difference of smoke odor change with far IR radiation by electronic nose system analysis. Our results indicated that the use of far IR radiation had a little effect on changes of solid, vapor, and odor of smoke, but it had no effect on gaseous components.

  • PDF

기상증착공정에 의한 산화아연 나노로드의 성장 (Growth of ZnO Nanorod Using VS Method)

  • 김나리;김재수;변동진;노대호;양재웅
    • 한국재료학회지
    • /
    • 제13권10호
    • /
    • pp.668-672
    • /
    • 2003
  • The ZnO nanorods were synthesized using vapor-solid (VS) method on sodalime glass substrate without the presence of metal catalyst. ZnO nanorods were prepared thermal evaporation of Zn powder at $500^{\circ}C$. As-fabricated ZnO nanorods had an average diameter and length of 85 nm and 1.7 $\mu\textrm{m}$. Transmission electron microscopy revealed that the ZnO nanorods were single crystalline with the growth direction perpendicular to the (101) lattice plane. The influences of reaction time on the formation of the ZnO nanorods were investigated. The photoluminescence measurements showed that the ZnO nanorods had a strong ultraviolet emission at around 380 nm and a green emission at around 500 nm.

대기 분위기에서 열증발법에 의해 성장된 여러 가지 형상의 일차원 MgO 나노구조 (One-Dimensional MgO Nanostructures with Various Morphologies Grown by Thermal Evaporation Method under Atmospheric Environment)

  • 김남우;김진수;이근형
    • 한국재료학회지
    • /
    • 제33권7호
    • /
    • pp.279-284
    • /
    • 2023
  • One-dimensional MgO nanostructures with various morphologies were synthesized by a thermal evaporation method. The synthesis process was carried out in air at atmospheric pressure, which made the process very simple. A mixed powder of magnesium and active carbon was used as the source powder. The morphologies of the MgO nanostructures were changed by varying the growth temperature. When the growth temperature was 700 ℃, untapered nanowires with smooth surfaces were grown. As the temperature increased to 850 ℃, 1,000 ℃ and 1,100 ℃, tapered nanobelts, tapered nanowires and then knotted nanowires were sequentially observed. X-ray diffraction analysis revealed that the MgO nanostructures had a cubic crystallographic structure. Energy dispersive X-ray analysis showed that the nanostructures were composed of Mg and O elements, indicating high purity MgO nanostructures. Fourier transform infrared spectra peaks showed the characteristic absorption of MgO. No catalyst particles were observed at the tips of the one-dimensional nanostructures, which suggested that the one-dimensional nanostructures were grown in a vapor-solid growth mechanism.

Au-Si을 촉매로 급속화학기상증착법으로 성장한 Si 나노선의 구조 및 광학적 특성 연구 (Structural and optical properties of Si nanowires grown with island-catalyzed Au-Si by rapid thermal chemical vapor deposition(RTCVD))

  • 곽동욱;이연환
    • 한국진공학회지
    • /
    • 제16권4호
    • /
    • pp.279-285
    • /
    • 2007
  • 나노크기의 Au-Si을 촉매로 급속화학기상증착법을 이용하여 Si(111) 기판에 성장한 Si 나노선의 구조적인 형태 변화과정과 광학적 특성을 연구하였다. 액상 입자인 Au 나노 점은 기상-액상-고상(vapor-liquid-solid mechanism) 성장법에 의한 Si 나노선 형성 과정에서 촉매로 사용되었다 이 액체 상태인 나노점에 1.0Torr 압력과 $500-600^{\circ}C$ 온도 하에서 $SiH_4$$H_2$의 혼합가스를 공급하여 Si 나노선을 형성하였다. <111> 방향으로 형성한 Si 나노선의 형태를 전계방출 주사전자현미경(Field Emission Scanning Electron Microscope)으로 관찰하였다. 특히, 대부분의 나노선이 균일한 크기를 가지고 있으며, Si(111) 기판 표면에서 수직하게 정렬된 것을 확인하였다. 형성된 나노선의 크기를 분석한 결과, 직경과 길이가 각각 60nm와 5um의 분포를 가지는 것을 확인 하였다. 고 분해능 투과전자현미경(High Resolution-Transmission Electron Microscope)을 통해 약 3nm의 다결정 산화층으로 둘러 싸여 있는 Si 나노선이 단결정으로 형성된 것을 관찰하였다. 그리고 마이크로 라만 분광(Micro-Raman Scattering) 실험으로 Si 나노선의 광학적 특성을 분석하였다. 라만 측정결과 Si의 광학 포논(Optical Phonon) 신호가 Si 나노선의 영향으로 에너지가 작은 쪽으로 이동하며, Si 포논 신호의 폭이 비대칭적으로 증가하는 것을 확인 하였다.