• Title/Summary/Keyword: Vapor velocity

Search Result 232, Processing Time 0.027 seconds

Combustion in Methane-Air Pre-Mixture with Water Vapor(2)-Comparison of Burning Velocity (물 혼합에 의한 메탄-공기 예혼합기의 연소(2)-연소속도 비교)

  • Kwon, Soon-Ik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.3
    • /
    • pp.137-142
    • /
    • 2009
  • Burning velocity of methane-air mixtures with water vapor have been measured to study the process of flame propagation using schlieren photographs and computation. The computations were carried out for the burning velocity using premix code of Chemkin program to compare the experimental results. The quantity of water vapor contained were changed 5% and 10% of total mixtures, and equivalence ratio of mixtures between 0.8 and 1.2 were tested under the ambient temperature 323K and 373K. The results showed little difference between these two methods, the burning velocity was decreased by increasing the water vapor contents due to the interruption of flame development. And, the effect of ambient temperature was less significant by increasing the water contents on the burning velocity.

  • PDF

Combustion in Methane-Air Pre-Mixture with Water Vapor(1) - Progress of Flame Propagation (물 혼합에 의한 메탄-공기 예혼합기의 연소(1) - 화염전파과정)

  • Kwon, Soon-Ik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.1
    • /
    • pp.5-10
    • /
    • 2008
  • A flame speed of methane mixture of water vapor and air have been measured to study the process of flame propagation using schlieren photographs. The quantity of water vapor contained were changed 5% and 10% of total mixture, and equivalence ratio of mixture between 0.8 and 1.2 were tested under the ambient temperature 323K and 373K. The results showed that the burning velocity was decreased by increasing the water vapor contents due to the interruption of flame development. And, the reduction rate of burning velocity was smaller by increasing the water contents under the same ambient temperature. The effects of ambient temperature on burning velocity was decreased by increasing the water vapor contents.

  • PDF

Study on the velocity of gadolinium atomic vapor produced by electron beam heating (전자빔 가열로 발생시킨 Gd 원자증기의 속도에 관한 연구)

  • 정의창;권덕희;고광훈;김택수
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.4
    • /
    • pp.228-234
    • /
    • 2003
  • The velocity of gadolinium(Gd) atomic vapor vaporized by an electron beam was measured by a microbalance. The velocity of about 900 ㎧ was obtained at an evaporation surface temperature of 2400-2500 K. The measured value was approximately 100 ㎧ faster than the maximum velocity of an ideal monatomic gas in an adiabatic expansion. This phenomenon can be explained that the internal energy of Gd atoms populated in higher excited levels at the high temperature should be convened to kinetic energy during adiabatic expansion. The calculated velocity agrees with the measured one when 100 excited energy levels are included in an enthalpy term for the velocity calculation. The characteristics of vapor flow as a function of heated surface temperature are also reported.

A study on the water vapor permeability velocity of Polypropylene spunbond non-woven fabrics (폴리프로필렌 부직포의 투습속도에 관한 연구)

  • Choi, Jae-Woo;Jun, Byung-Ik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.3
    • /
    • pp.229-233
    • /
    • 2006
  • The water vapor permeability of polypropylene spun bond non-woven fabrics were investigated with the water vapor permeability velocity at $20^{\circ}C$, $30^{\circ}C$ and $40^{\circ}C$ by applying the hygroscopic method. At each temperature 50, 65 and 80 %RH conditions were used. The results indicated that the water vapor permeability velocity increased with increasing the water vapor concentration difference between both sides of sample surfaces and it decreased with increasing the number of the piled-up fabrics and the apparent density.

  • PDF

Laminar Film Condensation Model of Pure Steam in a Vertical Tube (수직관 내 순수 증기의 층류 액막 응축 모델)

  • Kim, Dong Eok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.3
    • /
    • pp.33-40
    • /
    • 2014
  • In this study, a new model for calculating the liquid film thickness and condensation heat transfer coefficient in a vertical condenser tube is proposed by considering the effects of gravity, liquid viscosity, and vapor flow in the core region of the flow. In order to introduce the radial velocity profile in the liquid film, the liquid film flow was regarded to be in Couette flow dragged by the interfacial velocity at the liquid-vapor interface. For the calculation of the interfacial velocity, an empirical power-law velocity profile had been introduced. The resulting liquid film thickness and heat transfer coefficient obtained from the proposed model were compared with the experimental data from other experimental study and the results obtained from the other condensation models. In conclusion, the proposed model physically explained the liquid film thinning effect by the vapor shear flow and predicted the condensation heat transfer coefficient from experiments reasonably well.

A Numerical Study for the Maximizing Water Vapor Flux and Thermal Efficiency in Direct Contact Membrane Distillation (DCMD) Process (직접 접촉식 막증류 공정에서 담수 투과량 및 열효율 극대화를 위한 수치적 연구)

  • Kim, Sang-Hun;Lee, Jung-Gil;Kim, Woo-Seung
    • Membrane Journal
    • /
    • v.22 no.5
    • /
    • pp.369-380
    • /
    • 2012
  • A one-dimensional numerical model based on the energy and mass equations have been developed to predict the trans membrane water vapor flux and thermal efficiency under various operating conditions in Direct Contact Membrane Distillation (DCMD) process. The model validation have been carried out by experimental data from literature and showed good agreement. The effect of operating parameters such as brine inlet temperature and velocity, and distillate inlet temperature and velocity to increase water vapor flux and thermal efficiency were predicted by the steady-state model. The results showed that the inlet temperature and velocity in brine side are dominant factors to control the water vapor flux and thermal efficiency because the effect of inlet temperature and velocity in brine side showed the higher water vapor flux and thermal efficiency than that of inlet temperature and velocity in distillate side. The water vapor flux was increased 3.4 times in the range of 21.22 $kg/m^2h$ to 71.26 $kg/m^2h$ and the thermal efficiency was increased 37.5% in that of 0.556 to 0.765 with increasing brine inlet temperature from $60^{\circ}C$ to $95^{\circ}C$. Meanwhile, the water vapor flux was increased 30% in that of 27.91 $kg/m^2h$ to 36.33 $kg/m^2h$ and thermal efficiency increased 7.5% in that of 0.6 to 0.646 as the brine inlet velocity was increased from 60 m/h to 300 m/h.

The Influence of Variable Thermophysical Properties for Filmwise Condensation of Superheated Vapor on a Vertical Wall (수직 벽에서 과열증기의 막응축에 대한 열물성의 영향)

  • 김경훈;성현찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.235-243
    • /
    • 2000
  • A theoretical model for laminar filmwise condensation along an isothermal vertical wall at constant pressure has been formulated on the basis of conservation laws and other fundamental physical principles. The model was applied to the prediction of the influences of variable thermophysical properties of liquid and vapor layers in the filmwise condensation of superheated vapor of Rl2, R134a, R142b and R152a. The dimensionless velocity component method was employed in the transformation of the governing equations and their boundary conditions, and the polynomial method was used for treating variable thermophysical properties of liquid and vapor. Physical quantities, such as the dimensionless thickness of the liquid layer, local heat transfer rate and mean heat transfer coefficient, were investigated for different values of the superheated temperature of the stagnant vapor far from the wall. It was found that the value of mean heat transfer coefficient of R134a was higher than other refrigerants for the change of the superheated temperature.

  • PDF

EFFECTS OF WATERY VAPOR CONCENTRATION ON DROPLET EVAPORATION IN HOT ENVIRONMENT

  • Lee, M.J.;Kim, Y.W.;Ha, J.Y.;Chung, S.S.
    • International Journal of Automotive Technology
    • /
    • v.2 no.3
    • /
    • pp.109-115
    • /
    • 2001
  • A study has been conducted to clarify the effect of watery vapor concentration in hot ambient on droplet evaporation. Droplets of water, ethanol, n-hexadecaneand n-heptane were used in this experimental study. Ambient conditions are fixed at 470 K in temperature, 0.1 MPa in pressure and 2 m/s in velocity of ambient air. Watery vapor concentration was changed 0%~40% by 10% by add water to air. To obtain the time histories of droplet diameter after exposed in ambient, a suspended droplet in hot and humid ambient stream was synchronized with a back flash light, and enlarged droplet images were taken by a CCD camera. The evaporation rate constant of water droplet decreases slightly with the vapor concentration because diffusion velocity reduction of droplet vapor occurs on the surface. The values of ethanol and n-heptane droplet actively increase by effect that water from condensation of vapor flows into the droplet. The evaporation rate constant of n-hexadecane which has higher boiling point than water increases within around 30% of the concentration.

  • PDF

Experimental Study on Two-Phase Flow Parameters of Subcoolet Boiling in Inclined Annulus

  • Lee, Tae-Ho;Kim, Moon-Oh;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.29-48
    • /
    • 1999
  • Local two-phase flow parameters of subcooled flow boiling in inclined annulus were measured to investigate the effect of inclination on the internal flow structure. Two-conductivity probe technique was applied to measure local gas phasic parameters, including void fraction, vapor bubble frequency, chord length, vapor bubble velocity and interfacial area concentration. Local liquid velocity was measured by Pilot tube. Experiments were conducted for three angles of inclination; 0$^{\circ}$(vertical), 30$^{\circ}$, 60$^{\circ}$. The system pressure was maintained at atmospheric pressure. The range of average void fraction was up to 10% and the average liquid superficial velocities were less than 1.3 m/sec. The results of experiments showed that the distributions of two-phase How parameters were influenced by the angle of channel inclination. Especially, the void fraction and chord length distributions were strongly affected by the increase of inclination angle, and flow pattern transition to slug flow was observed depending on the How conditions. The profiles of vapor velocity, liquid velocity and interfacial area concentration were found to be affected by the non-symmetric bubble size distribution in inclined channel. Using the measured distributions of local phasic parameters, an analysis for predicting average void fraction was performed based on the drift flux model and flowing volumetric concentration. And it was demonstrated that the average void fraction can be more appropriately presented in terms of flowing volumetric concentration.

  • PDF

Friction in Micro-Channel Flows of a Liquid and Vapor in Trapezoidal Grooves (미소 사다리꼴 그루브를 갖는 채널내의 유동에서 기-액의 상호마찰의 영향)

  • Suh, Jeong-Se;Grief, Ralph
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.124-129
    • /
    • 2000
  • The flow of liquid and vapor is investigated in trapezoidal grooves. The effect of variable shear stress along the interface of the liquid and vapor is studied for both co-current and counter-current flows. Velocity contours and results fur the friction are obtained for both trapezoidal grooves. An approximate relation that was previously utilized for the friction for the liquid was modified to obtain accurate agreement with the results for trapezoidal grooves.

  • PDF