• Title/Summary/Keyword: Vapor pressure of water

Search Result 422, Processing Time 0.043 seconds

CO2 Separation Techniques Using Ionic Liquids (이온성 액체를 이용한 CO2 분리기술)

  • Cho, Min Ho;Lee, Hyunjoo;Kim, Honggon
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • Since carbon dioxide, $CO_2$, was revealed as a major greenhouse gas, techniques for its separation, capture, and storage have received increasing interest in recent years. Aqueous amines are the most widely accepted $CO_2$ absorbents, but they cause the problems such as high regeneration energy, thermal degradation, and loss of absorbents due to their volatility. Ionic liquids having high thermal stability, extremely low vapor pressure, and capability of selectively absorbing specific gases have been proposed as new $CO_2$ capturing solvents which may potentially replace aqueous amines. By reviewing the ionic liquids having capability to absorb $CO_2$ reported in previous papers, we seek to develop a comprehensive understanding on the factors that influence the $CO_2$ solubility in ionic liquids such as their structures, absorption temperature, pressure, water content, etc., and to estimate the potential of ionic liquids as $CO_2$ separating media.

Application of the WSGGM for arbitrary gas mixtures of water vapor and carbon dioxide (임의 성분비로 구성된 수증기-이산화탄소 혼합가스에 대한 회색가스가중합법의 적용 연구)

  • Park, Won-Hee;Kim, Tae-Kuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.88-95
    • /
    • 2003
  • The weighted sum of gray gas model(WSGGM) is applied to arbitrary mixtures of CO$_2$ and H$_2$0 gases. To evaluate this model, the spectral and total intensities are obtained for two different problem types. One has uniform, parabolic and boundary layer type temperature profiles with uniform partial pressure, and the other has nonuniform partial pressure and temperature profile. The results obtained from the two different problem types show fairly good agreements with the results obtained by the statistical narrow band model(SNB model) which is regarded as the reference solutions. The WSGGM and its data base provided by this study can be used for analysis of radiative transfer by combustion gases with different thermal loadings and chemical compositions.

Generation of Meteorological Parameters for Tropospheric Delay on GNSS Signal (GNSS 신호의 대류층 지연오차 보정을 위한 기상 정보 생성)

  • Jung, Sung-Wook;Baek, Jeong-Ho;Jo, Jung-Hyun;Lee, Jae-Won;Park, In-Kwan;Cho, Sung-Ki;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.3
    • /
    • pp.267-282
    • /
    • 2008
  • The GNSS (Global Navigation Satellite System) signal is delayed by the neutral atmosphere at the troposphere, so that the delay is one of major error sources for GNSS precise positioning. The tropospheric delay is an integrated refractive index along the path of GNSS signal. The refractive index is empirically related to standard meteorological variables, such as pressure, temperature and water vapor partial pressure, therefore the tropospheric delay could be calculated from them. In this paper, it is presented how to generate meteorological data where observation cannot be performed. KASI(Korea Astronomy & Space Science Institute) has operated 9 GPS (Global Positioning System) permanent stations equipped with co-located MET3A, which is a meteorological sensor. Meteorological data are generated from observations of MET3A by Ordinary Kriging. To compensate a blank of observation data, simple models which consider periodic characteristics for meteorological data, are employed.

Evapotranspiration Measurements using an Eddy Covariance Technique in the Seolmacheon Catchment (에디 공분산으로 관측된 설마천 산림 유역의 증발산)

  • Kwon, Hyou-Jung;Kim, Joon;Lee, Jung-Hoon;Jung, Sung-Won;Lee, Jin-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1112-1116
    • /
    • 2009
  • The importance of securing water resources and their efficient management has attracted more attention recently due to water deficit. In water budget analysis, however, evapotranspiration (${\lambda}E$) has been approximated as the residual in the water balance equation or estimated from empirical equations and assumptions. To minimize the uncertainties in these estimates, it is necessary to directly measure ${\lambda}E$. In this study, using the eddy covariance technique, we have measured ${\lambda}E$ in a mixed forest in the Seolmacheon catchment in Korea from September 2007 to December 2008. During the growing season (May - July), ${\lambda}E$ in this mixed forest averaged about 2.2 mm $d^{-1}$, whereas it was on average 0.5 mm $d^{-1}$ during the non-growing season in winter. The annual total ${\lambda}E$ in 2008 was 581 mm $y^{-1}$, which is about 1/3 of the annual precipitation of 1997 mm. Despite the differences in the amount and frequency of precipitation, the accumulated ${\lambda}E$ during the overlapping period (i.e., September to December) for 2007 and 2008 was both ${\sim}$ 110 mm, showing virtually no difference. The omega factor, which is a measure of decoupling between forest and the atmosphere, was on average 0.5, indicating that the contributions of equilibrium ${\lambda}E$ and imposed ${\lambda}E$ to the total ${\lambda}E$ were about the same. The results suggest that ${\lambda}E$in this mixed forest was controlled by various factors such as net radiation, vapor pressure deficit, and canopy conductance. In this study, based on the direct measurements of ${\lambda}E$, we have quantified the relative contribution of ${\lambda}E$in the water balance of a mixed forest in the Seolmacheon catchment. In combination with runoff data, the information on ${\lambda}E$ would greatly enhance the reliability of water budget analysis in this catchment.

  • PDF

Reviewing the Explosively Deepening Cyclone(Cyclonic Bomb) over the East Sea with the Satellite Observations (위성관측에 의한 동해상의 폭발적 저기압의 고찰)

  • 정효상
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.2
    • /
    • pp.126-138
    • /
    • 1996
  • The characteristics of rapid development of the low pressure system over the East Sea from 06 to 08 Nov., 1995 has been analyzed in detail by the synoptic numerical products and satellite observations. The Low system was initially triggered the development of the baroclinic leaf cloud over the border of the northern part of Korea and China and moved eastward and then developed explosively com-ma or lambda type cloud system over the East Sea. To forecast well the general development and movement of the coastal winter cyclone over the East Sea popularly in a numerical simulation by several scientists, the large baroclinicity, continuous support of water vapor, and sequential cold outbreak over the warm sea surface have been more commonly concerned about. The cyclone which the central surface pressure was dropped 40hPa within 24 hours has often accompanied strong wind and heavy snow- or rain-fall in the winter season. In all successive observations with 12-hourly satellite imagery and analyzed meteorological variables in this period, the centers of the sea-level pressure and 500hPa geopotential height associated with this cyclone were typically illustrated by moving farther eastward using GMS combined enhanced IR images. The maxi-mum wind sustained by this system with the intensity and central pressure of tropical storm was about 60 knots with the center pressure drop of 44hPa/day similar to the North American cyclonic bomb and Atlantic storm.

A Kinetics Study of Rn Daughter and Atmospheric Trace Gas Using Alpha Track Detection (알파비적검출방법에 의한 대기중 라돈딸핵종의 화학적 동특성연구)

  • Yoon, Suk-Chul;Ha, Chung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.2
    • /
    • pp.79-83
    • /
    • 1995
  • A number of investigators have reported formation of radiolytic ultrafine particles produced by the interaction of ionizing radiation with atmospheric trace gases. Previous studies have suggested that a very high localized concentration of the hydroxyl radical produced by the radiolysis of water can react with atmospheric trace gases such as $SO_2$ and produce lower vapor pressure compounds that can subsequently nucleate. To determine the trace gas and water vapor concentration dependence of the active, positively charged, first decayt product of radon (Po-218), a well-controlled radon chamber was used in this research. The mobility spectrum of the decay products in the range of $0.07-5.0cm^2/V\;sec$ from the radon chamber was measured using alpha track detector installed inside a specially-designed electrostatic spectrometer. Measurements were taken for different concentrations (0.5ppm to 5ppm) of $SO_2$ in Purified, Compressed air. A kinetics Study following the clustering of $SO_2$ around the $PoO_x^+$ ion in an excess of $SO_2$ for interpretation of the reaction processes was performed.

  • PDF

A Study on the Fog Occurrence in Suyoung Bay (수영만의 안개 발생에 관한 연구)

  • Jo, Gyu-Dae;Kim, Sun-Yeong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.3
    • /
    • pp.254-264
    • /
    • 1990
  • Using the meteorological data, surface weather map, and oceanographic data for 5 years(1984-1988). I investigated the characteristics of the fog occurrence and the role of the inshore in Pusan about the fog occurrence. And the meteorological data and sea surface temperature(SST), which were observed in July, 1989 in Suyoung Bay, were compared with those in Pusan. The fogs in Pusan concentrate in May, June and July. And at fog occurrence time the principal wind directions are Southwest(SW) winds, which easily supply with water vapor, and a series of Northeast(NE) wind. At the fog days pressure patterns are pattern 7 in spring time (March, April, and May) and pattern 10 and pattern 13 in summer time (June, July, and August). Also the advection fog(sea fog) is closely related with the relationship between warm and cold advection in 850~700mb and cold and warm SST rather than the increase of the instability of atmosphere in 850~500mb. The fogs in Taegu, which is the inland region, mainly occur at dawn in fall time due to the strong night radiation fog. On the other hand in Pusan the coastal region, the fogs occur from late spring time to summer time (May, June, and July). Because there is the abundant supply of the water vapor from the ocean owing to a series of South(S) wind at this time. Then the atmosphere, which has high relative humidity, reaches easily the supersaturation by the radiation cooling. In Suyoung Bay and Pusan the meteorological observation data, SST and fog days are almost similar. And I think that the mechanism of the fog occurrence nearly accords with both regions.

  • PDF

Study of Hydration Reaction Characteristics of Inorganic Salts for Chemical Cold Storage and Method of Enhancement of Heat and Mass Transfer (화학축냉용 무기염들의 수화반응 및 열 및 물질전달 향상방안)

  • 김상욱;한종훈;황용준;이건홍
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.185-191
    • /
    • 1999
  • An air-conditioning system based on the chemical heat storage principle was considered. $H_2O$ was chosen as the reaction gas and the working fluid as well. Na$_2$S, CaCl$_2$, MnCl$_2$, BaCl$_2$, MgCl$_2$, Fe$_2$(SO$_4$)$_3$ and MnSO$_4$ were tested as the solid reactants by using Cahn pressure balance. Na$_2$S was superior to other salts in respect of high capability of absorption of water gas, 5 moles of $H_2O$ per unit mole of Na$_2$S, and adequate temperature of adsorption, $65^{\circ}C$ at 7torr, and of desorption, 13$0^{\circ}C$ at 76torr. Clausius-Clapeyron diagram of Na$_2$S was obtained via adsorption experiments at several vapor pressures of water gas. To enhance heat and mass transfer characteristics, usually below 1W/m K, of the reactor bed of general adsorption systems, expanded graphite block was adapted as the support of Na$_2$S salt. Expanded graphite blocks had thermal conductivity values of 20~80W/mK with respect to 100~400kg/㎥ of block bulk density. Permeability values of expanded graphite blocks were 10$^{-13}$ ~ 10$^{-14}$ $m^2$ with respect to 100~300kg/㎥ of block bulk density showing highly decreasing values of permeability, below 10$^{-l4}$$m^2$, in the range of above 150kg/㎥ of block bulk density.y.

  • PDF

A Study on Synthetic Method and Material Analysis of Calcium Ammine Chloride as Ammonia Transport Materials for Solid SCR (Solid SCR용 암모니아 저장물질인 Calcium Ammine Chloride의 합성방법 및 물질분석 연구)

  • Shin, Jong Kook;Yoon, Cheon Seog;Kim, Hongsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.199-207
    • /
    • 2015
  • Solid materials of ammonia sources with SCR have been considered for the application of lean NOx reduction in automobile industry, to overcome complex problems of liquid urea based SCR. These solid materials produce ammonia gas directly with proper heating and can be packaged by compact size, because of high volumetric ammonia density. Among ammonium salts and metal ammine chlorides, calcium ammine chloride was focused on this paper due to low decomposition temperature. In order to make calcium ammine chloride in lab-scale, simple reactor and glove box was designed and built with ammonium gas tank, regulator, and sensors. Basic test conditions of charging ammonia gas to anhydrous calcium chloride are chosen from equilibrium vapor pressure by Van't Hoff plot based on thermodynamic properties of materials. Synthetic method of calcium ammine chloride were studied for different durations, temperatures, and pressures with proper ammonia gas charged, as a respect of ammonia gas adsorption rate(%) from simple weight calculations which were confirmed by IC. Also, lab-made calcium ammine chloride were analyzed by TGA and DSC to clarify decomposition step in the equations of chemical reaction. To understand material characteristics for lab-made calcium ammine chloride, DA, XRD and FT-IR analysis were performed with published data of literature. From analytical results, water content in lab-made calcium ammine chloride can be discovered and new test procedures of water removal were proposed.

Influence of NCG Charging Mass on the Heat Transport Capacity of Variable Conductance Heat Pipe (불응축가스량이 가변전열 히트파이프의 열수송 특성에 미치는 영향)

  • Suh Jeong-Se;Park Young-Sik;Chung Kyung-Taek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.320-327
    • /
    • 2006
  • Numerical analysis and experimental study are performed to investigate the effect of heat load and operating temperature on the thermal performance of several variable conductance heat pipe (VCHP) with screen meshed wick. The heat pipe is designed in 200 screen meshes, 500 mm length and 12.7 mm outer diameter tube of copper, water (4.8 g) is used as working fluid and nitrogen as non-condensible gas (NCG). Heat pipe used in this study has evaporator, condenser and adiabatic section, respectively. Analysis values and experimental data of wall temperature distribution along axial length are presented for heat transport capacity, condenser cooling water temperature change, degrees of an inclination angle and operating temperature. These analysis and experiment give the follow findings: For the same charging mass of working fluid, the operating temperature of heat pipe becomes to be high with the increasing of charging mass of NCG. When the heat flux at the evaporator section increases, the vapor pressure in the pipe rises and consequently compresses the NCG to the condenser end part and increases the active length of the condenser. From previous process, it is found out we can control the operating temperature effectively and also the analysis and experimental results are relatively coincided well.