• Title/Summary/Keyword: Vapor phase

Search Result 1,129, Processing Time 0.034 seconds

Crystalline Properties of GaN Layers Grown on PSS and AlN Buffered PSS by HVPE Method (HVPE법을 이용하여 PSS와 AlN Buffered PSS 위에 성장시킨 GaN 박막의 결정 특성)

  • Lee, Won Jun;Park, Mi Seon;Lee, Won Jae;Kim, Il Su;Choi, Young Jun;Lee, Hae Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.386-391
    • /
    • 2018
  • An epitaxial GaN layer was grown on a cone-shape-patterned sapphire substrate (PSS) (Sample A) and an AlN-buffered PSS (Sample B) with two growth steps under the same process conditions by employing the hydride vapor phase epitaxy (HVPE) method. We have investigated the characteristics of the GaN layer grown on two kinds of substrates at each growth step. The cross-sectional SEM image of the GaN layer grown on the two types of substrates showed growth states of GaN layers formed during the 1st and 2nd growth steps with different growth durations. Dislocation density was obtained by calculation using the FWHM value of the rocking curve for (002) and (102). Sample A showed 2.62+08E and 6.66+08E and sample B exhibited 5.74+07E and 1.65+08E for two different planes. The red shift was observed is photoluminescence (PL) analysis and Raman spectroscopy results. GaN layers grown on AlN-buffered PSS exhibited better optical and crystallographic properties than GaN layers grown on PSS.

A Study on the decision of Scattering distance by Shape of Fragments in LPG Tank lorry Explosion (LPG 탱크로리 폭발시 파편 형상에 따른 비산거리 산정에 관한 연구)

  • Lee, Young Jin;Hwang, Yong Woo;Lee, Ik Mo;Moon, Jin Young
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.2
    • /
    • pp.29-34
    • /
    • 2017
  • LPG is a substance that requires a lot of attention because it can cause fatal damage to people and environment when an accident occurs. LPG is frequently accidents in transportation facilities as well as fixed facilities, among which LPG tank lorries are the most frequent accidents. When the LPG tank is evacuated, the LP gas leaks into two phases, leaks mostly to the gas and leaks to some liquid. At this time, the leaked gas will also sink downward because it is heavier than air, and if it continues to leak, it may form an explosion and explode by the ignition source. The purpose of this study is to present the evacuation distance by analyzing the effect distance of the LPG liquefied petroleum gas in the event of explosion. As a result of calculation of the scattering radius of the fragment, the cylinder fragment was scattered up to 561 m. Therefore, it is appropriate to set the distance to be escaped when the LPG tanker leaks to 561m or more.

Optical emission analysis of hybrid air-water discharges

  • Pavel, Kostyuk;Park, J.Y.;Han, S.B.;Koh, H.S.;Gou, B.K.;Lee, H.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.521-522
    • /
    • 2006
  • In this paper, hybrid air-water discharges were used to develop an optimal condition for providing a high level of water decomposition for hydrogen yield. Electrical and optical phenomena accompanying the discharges were investigated along with feeding gases, flow rates, and point-to-plane electrode gap distance. The primary focus of this experiment was put on the optical emission of the near UV range, with the energy threshold sufficient for water dissociation and excitation. The $OH(A^{2+},'=0\;X^2,"=0$) band's optical emission intensity indicated the presence of plasma chemical reactions involving hydrogen formation. In the gaseous atmosphere saturated with water vapor the OH(A-X) band intensity was relatively high compared to the liquid and transient phases although the optical emission strongly depended on the flow rate and type of feeding gas. In the gaseous phase discharge phenomenon for Ar carrier gas transformed into a gliding arc via the flow rate growth. OH(A-X) band's intensity increased according to the flow rate or residence time of He feeding gas. Reciprocal tendency was acquired for $N_2$ and Ar carrier gases. The peak value of OH(A-X) intensity was observed in the proximity of the water surface, however in the cases of Ar and $N_2$ with 0.5 SLM flow rate peaks shifted to the region below the water surface. Rotational temperature ($T_{rot}$) was estimated to be in the range of 900-3600 K, according to the carrier gas and flow rate, which corresponds to the arc-like-streamer discharge.

  • PDF

Adhesion Characteristics between Mold and Thermoplastic Polymer Film in Thermal Nanoimprint Lithography (열 나노임프린트 리소그래피에서의 몰드와 열가소성 폴리머 필름 사이의 응착 특성)

  • Kim, Kwang-Seop;Kang, Ji-Hoon;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.24 no.5
    • /
    • pp.255-263
    • /
    • 2008
  • Adhesion tests were conducted to investigate the adhesion characteristics between mold and thermoplastic polymer film. Coating of anti-sticking layer (ASL), a kind of polymer material, imprint pressure, and separation velocity were considered as the process conditions. A piece of fused silica without patterns on its surface was used as a mold and the thermoplastic polymer films were made on Si substrate by spin-coating the commercial polymer solution such as mr-I PMMA and mr-I 7020. The ASL was derived from (1H, 1H, 2H, 2H - perfluorooctyl) trichlorosilane($F_{13}$-OTS) and coated on the fused silica mold in vapor phase. The pull-off force was measured in various process conditions and the surfaces of the mold and the polymer film were observed after separation. It was found that the adhesion characteristics between the mold and the thermoplastic polymer film and the release performance of ASL were changed according to the process conditions. The ASL was effective to reduce the pull-off force and the damage of polymer film. In cases of the mold coated with ASL, the pull-off force did not depend on imprint pressure and separation velocity.

Synthesis and Characterization of Large-Area and Highly Crystalline Molybdenum Disulphide Atomic Layer by Chemical Vapor Deposition

  • Park, Seung-Ho;Kim, Yooseok;Kim, Ji Sun;Lee, Su-Il;Cha, Myoung-Jun;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.287.1-287.1
    • /
    • 2013
  • The Isolation of few-layered transition metal dichalcogenides has mainly been performed by mechanical and chemical exfoliation with very low yields. in particular, the two-dimensional layer of molybdenum disulfide (MoS2) has recently attracted much interest due to its direct-gap property and potential application in optoelectronics and energy harvesting. However, the synthetic approach to obtain high-quality and large-area MoS2 atomic thin layers is still rare. In this account, a controlled thermal reductionsulfurization method is used to synthesize large-MoOx thin films are first deposited on Si/SiO2 substrates, which are then sulfurized (under vacuum) at high temperatures. Samples with different thicknesses have been analyzed by Raman spectroscopy and TEM, and their photoluminescence properties have been evaluated. We demonstrated the presence of single-, bi-, and few-layered MoS2 on as-grown samples. It is well known that the electronic structure of these materials is very sensitive to the number of layer, ranging from indirect band gap semiconductor in the bulk phase to direct band gap semiconductor in monolayers. This synthetic approach is simple, scalable, and applicable to other transition metal dichalcogenides. Meanwhile, the obtained MoS2 films are transferable to arbitrary substrates, providing great opportunities to make layered composites by stacking various atomically thin layers.

  • PDF

Characteristics of Thick GaN on Si using AlN and LT-GaN Buffer Layer (AlN과 저온 GaN 완충층을 이용한 Si 기판상의 후막 GaN 성장에 관한 연구)

  • Baek, Ho-Seon;Lee, Jeong-Uk;Kim, Ha-Jin;Yu, Ji-Beom
    • Korean Journal of Materials Research
    • /
    • v.9 no.6
    • /
    • pp.599-603
    • /
    • 1999
  • We have investigated the growth characteristics of thick GaN on Sim substrate with AlN and low temperature GaN buffer layer. The vertical hydride vapor phase epitaxy system with $GaCl_3$ precursor was used for growth of GaN. AlN and GaN buffer layer were deposited on Si substrate to reduce the lattice mismatch and the thermal expansion coefficient mismatch between si and GaN. Optimization of deposition condition for AlN and low temperature GaN buffer layers were carried out. We studied the effects of growth temperature, V/III ratio on the properties of thick GaN. Surface morphology, growth rate and crystallinity of thick GaN were measured using Atomic Force Microscopy (AFM), $\alpha-step$-, Scanning Electron Microscopy (SEM) and X-Ray Diffractometer(XRD).

  • PDF

Design and Fabrication of Flexible OTFTs by using Nanocantact Printing Process (미세접촉프린팅 공정을 이용한 유연성 유기박막소자(OTFT)설계 및 제작)

  • Jo Jeong-Dai;Kim Kwang-Young;Lee Eung-Sug;Choi Byung-Oh;Esashi Masayoshi
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.506-508
    • /
    • 2005
  • In general, organic TFTs are comprised of four components: gate electrode, gate dielectric, organic active semiconductor layer, and source and drain contacts. The TFT current, in turn, is typically determined by channel length and width, carrier field effect mobility, gate dielectric thickness and permittivity, contact resistance, and biasing conditions. More recently, a number of techniques and processes have been introduced to the fabrication of OTFT circuits and displays that aim specifically at reduced fabrication cost. These include microcontact printing for the patterning of metals and dielectrics, the use of photochemically patterned insulating and conducting films, and inkjet printing for the selective deposition of contacts and interconnect pattern. In the fabrication of organic TFTs, microcontact printing has been used to pattern gate electrodes, gate dielectrics, and source and drain contacts with sufficient yield to allow the fabrication of transistors. We were fabricated a pentacene OTFTs on flexible PEN film. Au/Cr was used for the gate electrode, parylene-c was deposited as the gate dielectric, and Au/Cr was chosen for the source and drain contacts; were all deposited by ion-beam sputtering and patterned by microcontact printing and lift-off process. Prior to the deposition of the organic active layer, the gate dielectric surface was treated with octadecyltrichlorosilane(OTS) from the vapor phase. To complete the device, pentacene was deposited by thermal evaporation and patterned using a parylene-c layer. The device was shown that the carrier field effect mobility, the threshold voltage, the subthreshold slope, and the on/off current ratio were improved.

  • PDF

Removal of Super-Refraction Echoes using X-band Dual-Polarization Radar Parameters (X-밴드 이중편파 레이더 변수를 이용한 과대굴절에코 제거)

  • Seo, Eun-Kyoung;Kim, Dong Young
    • Journal of the Korean earth science society
    • /
    • v.40 no.1
    • /
    • pp.9-23
    • /
    • 2019
  • Super-refraction of radar beams tends to occur primarily under a particular vertical structure of temperature and water vapor pressure profiles. A quality control process for the removal of anomalous propagation (AP) ehcoes are required because APs are easily misidentified as precipitation echoes. For this purpose, we collected X-band polarimetric radar parameters (differential reflectivity, cross-correlation coefficient, and differential phase) only including non-precipitation echoes (super-refraction and clear-sky ground echoes) and precipitation echoes, and compared the echo types regarding the relationships among radar reflectivities, polarimetric parameters, and the membership functions. We developed a removal algorithm for the non-precipitation echoes using the texture approach for the polarimetric parameters. The presented algorithm is qualitatively validated using the S-band Jindo radar in Jeollanam-do. Our algorithm shows the successful identification and removal of AP echoes.

Effect of the Array Type of Heat Exchangers on Performance of Refrigerated Warehouse for Utilization of LNG Cold Energy (LNG 냉열활용을 위한 열교환기의 배열 형태가 냉동창고 성능에 미치는 연구)

  • HAN, DANBEE;KIM, YUNJI;BYUN, HYUNSEUNG;BAEK, YOUNGSOON
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.3
    • /
    • pp.282-288
    • /
    • 2019
  • When liquefied natural gas (LNG) is vaporized to form natural gas for industrial and household consumption, a tremendous amount of cold energy is transferred from LNG to seawater as a part of the phase-change process. This heat exchange loop is not only a waste of cold energy, but causes thermal pollution to coastal fishery areas by dumping the cold energy into the sea. This project describes an innovative new design for reclaiming cold energy for use by cold storage warehouses (operating in the 35 to $62^{\circ}C$ range). Conventionally, warehouse cooling is done by mechanical refrigeration systems that consume large amounts of electricity for the maintenance of low temperatures. Here, a closed loop LNG heat exchange system was designed (by simulator) to replace mechanical or vapor-compression refrigeration systems. The software PRO II with PROVISION V9.4 was used to simulate LNG cold energy, gas re-liquefaction, and the vaporized process under various conditions. The effects on sensible and latent heats from changes to the array type of heat exchangers have been investigated, as well as an examination of the optimum.

In-Situ Fabrication of TCP/Al2O3 and Fluorapatite/Al2O3 Composites by Normal Sintering of Hydroxyapatite and Al2O3 Powder Mixtures (Hydroxyapatite와 Al2O3 혼합분말의 상압소결에 의한 TCP/Al2O3 및 Fluorapatite/Al2O3 복합재료의 In-Situ 제조)

  • Ha, Jung-Soo;Han, Yoo-Jeong
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.129-135
    • /
    • 2019
  • A powder mixture of 70 wt% $Al_2O_3$ and 30 wt% hydroxyapatite (HA) is sintered at $1300^{\circ}C$ or $1350^{\circ}C$ for 2 h at normal pressure. An $MgF_2$-added composition to make HA into fluorapatite (FA) is also prepared for comparison. The samples without $MgF_2$ show ${\alpha}$ & ${\beta}$-tricalcium phosphates (TCPs) and $Al_2O_3$ phases with no HA at either of the sintering temperatures. In the case of $1,350^{\circ}C$, a $CaAl_4O_7$ phase is also found. Densification values are 69 and 78 %, and strengths are 156 and 104 MPa for 1,300 and $1,350^{\circ}C$, respectively. Because the decomposition of HA produces a $H_2O$ vapor, fewer large pores of $5-6{\mu}m$ form at $1,300^{\circ}C$. The $MgF_2$-added samples show FA and $Al_2O_3$ phases with no TCP. Densification values are 79 and 87 %, and strengths are 104 and 143 MPa for 1,300 and $1,350^{\circ}C$, respectively. No large pores are observed, and the grain size of FA ($1-2{\mu}m$) is bigger than that of TCP ($0.7{\mu}m{\geq}$) in the samples without $MgF_2$. The resulting $TCP/Al_2O_3$ and $FA/Al_2O_3$ composites fabricated in situ exhibit strengths 6-10 times higher than monolithic TCP and HA.