Browse > Article
http://dx.doi.org/10.4313/JKEM.2018.31.6.386

Crystalline Properties of GaN Layers Grown on PSS and AlN Buffered PSS by HVPE Method  

Lee, Won Jun (Department of Advanced Materials Engineering, Dong-Eui University)
Park, Mi Seon (Department of Advanced Materials Engineering, Dong-Eui University)
Lee, Won Jae (Department of Advanced Materials Engineering, Dong-Eui University)
Kim, Il Su (Department of Advanced Materials Engineering, Dong-Eui University)
Choi, Young Jun (LumiGNtech Co., Ltd.)
Lee, Hae Yong (LumiGNtech Co., Ltd.)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.31, no.6, 2018 , pp. 386-391 More about this Journal
Abstract
An epitaxial GaN layer was grown on a cone-shape-patterned sapphire substrate (PSS) (Sample A) and an AlN-buffered PSS (Sample B) with two growth steps under the same process conditions by employing the hydride vapor phase epitaxy (HVPE) method. We have investigated the characteristics of the GaN layer grown on two kinds of substrates at each growth step. The cross-sectional SEM image of the GaN layer grown on the two types of substrates showed growth states of GaN layers formed during the 1st and 2nd growth steps with different growth durations. Dislocation density was obtained by calculation using the FWHM value of the rocking curve for (002) and (102). Sample A showed 2.62+08E and 6.66+08E and sample B exhibited 5.74+07E and 1.65+08E for two different planes. The red shift was observed is photoluminescence (PL) analysis and Raman spectroscopy results. GaN layers grown on AlN-buffered PSS exhibited better optical and crystallographic properties than GaN layers grown on PSS.
Keywords
Patterned sapphire substrate (PSS); AlN buffered PSS; Red shift; Void;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Khan, K. Balakrishnan, and T. Katona, Nat. Photonics, 2, 77 (2008). [DOI: https://doi.org/10.1038/nphoton.2007.293]   DOI
2 T. H. Seo, S. Lee, K. H. Min, S. Chandramohan, A. H. Park, G. H. Lee, M. Park, E. K. Suh, and M. J. Kim, Sci. Rep., 6, 29464 (2016). [DOI: https://doi.org/10.1038/srep29464]   DOI
3 M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson, and M. Weyers, Semicond. Sci. Technol., 26, 014036 (2011). [DOI: https://doi.org/10.1088/0268-1242/26/1/014036]   DOI
4 H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano, K. Tsubaki, and N. Kamata, Phys. Status Solidi A, 206, 1176 (2009). [DOI: https://doi.org/10.1002/pssa.200880961]   DOI
5 Q. Dai, M. E. Foley, C. J. Breshike, A. Lita, and G. F. Strouse, J. Am. Chem. Soc., 133, 15475 (2011). [DOI: https://doi.org/10.1021/ja2039419]   DOI
6 T. Mukai, S. Nagahama, M. Sano, T. Yanamoto, D. Morita, T. Mitani, Y. Narukawa, S. Yamamoto, I. Niki, M. Yamada, S. Sonobe, S. Shioji, K. Deguchi, T. Naitou, H. Tamaki, Y. Murazaki, and M. Kameshima, Phys. Status Solidi A, 200, 52 (2003). [DOI: https://doi.org/10.1002/pssa.200303326]   DOI
7 T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. Appl. Phys., Part 1, 38, 3976 (1999). [DOI: https://doi.org/10.1143/JJAP.38.3976]   DOI
8 X. H. Wu, P. Fini, E. J. Tarsa, B. Heying, S. Keller, U. K. Mishra, S. P. DenBaars, and J. S. Speck, J. Cryst. Growth, 189, 231 (1998). [DOI: https://doi.org/10.1016/S0022-0248(98)00240-1]
9 S. Yoshida, S. Misawa, and S. Gonda, Appl. Phys. Lett., 42, 427 (1983). [DOI: https://doi.org/10.1063/1.93952]   DOI
10 C. Sasaoka, H. Sunakawa, A. Kimura, M. Nido, A. Usui, and A. Sakai, J. Cryst. Growth, 189, 61 (1998). [DOI: https://doi.org/10.1016/S0022-0248(98)00169-9]
11 E. V. Etzkorn and D. R. Clarke, J. Appl. Phys., 89, 1025 (2001). [DOI: https://doi.org/10.1063/1.1330243]   DOI
12 S. Nakamura, Science, 281, 956 (1998). [DOI: https://doi.org/10.1126/science.281.5379.956]   DOI
13 W. J. Lee, M. S. Park, W. J. Lee, Y. J. Choi, and H. Y. Lee, J. Cryst. Growth, 493, 8 (2018). [DOI: https://doi.org/10.1016/j.jcrysgro.2018.04.022]   DOI
14 J. Guo, D. E. Ellis, and D. J. Lam, Phys. Rev. B, 45, 13647 (1992). [DOI: https://doi.org/10.1103/PhysRevB.45.13647]   DOI
15 C. E. Dreyer, A. Janotti, and C. G. Van de Walle, Appl. Phys. Lett., 106, 212103 (2015). [DOI: https://doi.org/10.1063/1.4921855]   DOI
16 C. G. Dunn and E. F. Koch, Acta Metall., 5, 548 (1957). [DOI: https://doi.org/10.1016/0001-6160(57)90122-0]   DOI
17 T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, Jpn. J. Appl. Phys., 37, L398 (1998). [DOI: https://doi.org/10.1143/JJAP.37.L398]   DOI
18 J.W.P. Hsu, M. J. Manfra, D. V. Lang, S. Richter, S.N.G. Chu, A. M. Sergent, R. N. Kleiman, L. N. Pfeiffer, and R. J. Molnar, Appl. Phys. Lett., 78, 1685 (2001). [DOI: https://doi.org/10.1063/1.1356450]   DOI