• 제목/요약/키워드: Vapor phase

검색결과 1,125건 처리시간 0.029초

Vapor-phase Oxidation of Alkylaromatics over V/TiO2 and VSb/Al2O3 Catalysts: Effect of Alkali Metals

  • Yoon, Ji-Woong;Jhung, Sung-Hwa;Chang, Jong-San
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권12호
    • /
    • pp.2405-2408
    • /
    • 2007
  • Oxidation of alkylaromatics including toluene and p-methoxytoluene has been carried out over alkali metal (AM)-containing catalysts such as AM-V/TiO2 and AM-VSb/Al2O3 in vapor-phase using oxygen as an oxidant. The selectivity for partial oxidations increases with incorporation of an alkali metal or with increasing the basicity of alkali metals (from Na to Cs), irrespective of the supports or reactants. However, the conversion is nearly constant or slightly decreasing with the addition of alkali metals in the catalyst. The increased selectivity may be related with the decreased acidity even though more detailed work is necessary to understand the effect of alkali metals in the oxidation. The AM-VSb/Al2O3 may be suggested as a potential selective catalyst for vapor-phase oxidations.

수직관내 리튬브로마이드 수용액막의 흡수과정에 대한 비흡수가스의 영향 (Effects of Non-Absorbable Gases on the Absorption Process of Aqueous LiBr Solution Film in a Vertical Tube (II))

  • 김병주;이찬우
    • 대한기계학회논문집B
    • /
    • 제22권4호
    • /
    • pp.499-509
    • /
    • 1998
  • In the absorption process of water vapor in a liquid film, the composition of the gas phase, in which a non-absorbable gas is combined with the absorbate influences the transport characteristics remarkably. In the present study, the absorption processes of water vapor into aqueous solution of lithium bromide in the presence of non-absorbable gases were investigated analytically. The continuity, momentum, energy and diffusion equations for the solution film and gas phase were formulated in integral forms and solved numerically. It was found that the mass transfer resistance in gas phase increased with the concentration of non-absorbable gas. However the primary resistance to mass transfer was in the liquid phase. As the concentration of non-absorbable gas in the absorbate increased, the liquid-vapor interfacial temperature and concentration of absorbate in solution decreased, which resulted in the reduction of absorption rate. The reduction of mass transfer rate was found to be significant for the addition of a small amount of non-absorbable gas to the pure vapor, especially at the outlet of an absorber where non-absorbable gases accumulated. At higher non-absorbable gas concentration, the decrease of absorption flux was almost linear to the volumetric concentration of non-absorbable gas.

증발디젤분무의 발달 과정에 관한 연구 (A Study on Development Process of Evaporating Diesel Spray)

  • 염정국;박종상;정성식;하종률;김시범
    • 한국자동차공학회논문집
    • /
    • 제15권3호
    • /
    • pp.141-146
    • /
    • 2007
  • In this study, the effects of change in ambient gas viscosity on spray structure have been investigated in the high temperature and pressure field. To analyze the structure of evaporative diesel spray is important in speculation of mixture formation process. Emissions of diesel engines can be reduced by the control of the mixture formation process. Therefore, this study examines the evaporating spray structure in the constant volume chamber. The viscosity of ambient gas was selected as the experimental parameter, is changed from 21.7 mPa s to 32.1 mPa s by changing in ambient gas temperature. In order to obtain images of the liquid and vapor-phase of injected spray, exciplex fluorescence method was used in this study. The liquid and vapor-phase images were taken with 35mm still camera and CCD camera, respectively. Consequentially, it could be confirmed that the distribution of vapor concentration is more uniform in the case of the ambient gas with high viscosity than in that of the ambient gas with low viscosity.

HVPE(Hydride Vapor Phase Epitaxiy) 성장법으로 Ti metal mask를 이용한 GaN 성장연구 (GaN Grown Using Ti Metal Mask by HVPE(Hydride Vapor Phase Epitaxiy))

  • 김동식
    • 전자공학회논문지 IE
    • /
    • 제48권2호
    • /
    • pp.1-5
    • /
    • 2011
  • HVPE법으로 $3{\mu}m$의 GaN epi를 성장하고 이 위에 DC 마그네트론 Sputter를 이용하여 Ti stripe 패턴 형성하였으며 다시 HVPE를 이용하여 $120{\mu}m$ ~ $300{\mu}m$ 두께의 GaN를 overgrowth하였다. 성장된 GaN는 SEM 측정으로 Ti 패턴한 부분에서 void가 관찰되었고 보다 두꺼운 GaN를 성장시에는 크랙이 void를 따라 발생할 수 있음을 확인하였으며 XRD측정으로 FWHM은 188 arcsec로 측정되었다. 성장전의 GaN epi와의 반치폭을 비교하였을 때 패턴에 사용된 Ti는 overgrowth시 결정성에는 크게 영향을 주지 않는다는 것을 확인하였다.

Excimer 형광법을 이용한 연료증기 농도측정법에 대한 연구 (Measurement of Fuel Vapor Concentration by Excimer Fluorescence Method)

  • 황승민
    • 한국환경과학회지
    • /
    • 제27권6호
    • /
    • pp.437-445
    • /
    • 2018
  • Laser induced-exciplex-fluorescence (EXCIPLEX) proposed by Melton is used to visualize fuel vapor in spray combustion. However, in the EXCIPLEX method based on TMPD/naphthalene system, the TMPD : naphthalene ratio is strictly restricted to 1 : 9. In addition, fluorescence intensity due to the vapor phase is extremely weak. To overcome these drawbacks, we propose a new laser-induced-excimer fluorescence (EXCIMER) method to visualize the liquid and vapor phases simultaneously. The spatial distributions of liquid and vapor in fuel spray suspended by ultrasonic waves are compared using the EXCIPLEX and EXCIMER methods. The correlation between fuel vapor concentration and fluorescence intensity is experimentally investigated by measuring the fluorescence intensity of saturated vapor formed over liquid fuel at a controlled temperature. These experimental results indicate that the EXCIMER method is effective for evaluating fuel vapor visualization in spray combustion. Furthermore, the quantitative distribution of fuel vapor concentration can be correctly estimated by the EXCIMER method.

Resistive Switching in Vapor Phase Polymerized Poly (3, 4-ethylenedioxythiophene)

  • ;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.384-384
    • /
    • 2012
  • We report nonvolatile memory properties of poly (3, 4-ethylenedioxythiophene) (PEDOT) thin films grown by vapor phase polymerization using FeCl3 as an oxidant. Liquid-bridge-mediated transfer method was employed to remove FeCl3 for generation of pure PEDOT thin films. From the electrical measurement of memory device, we observed voltage induced bipolar resistive switching behavior with ON/OFF ratio of 103 and reproducibility of more than 103 dc sweeping cycles. ON and OFF states were stable up to 104 seconds without significant degradation. Cyclic voltammetry data illustrates resistive switching effect can be attributed to formation and rupture of conducting paths due to oxidation and reduction of PEDOT. The maximum current before reset process was found to be increase linearly with increase in compliance current applied during set process.

  • PDF

UV-Induced Graft Polymerization of Polypropylene-g-glycidyl methacrylate Membrane in the Vapor Phase

  • Hwang, Taek-Sung;Park, Jin-Won
    • Macromolecular Research
    • /
    • 제11권6호
    • /
    • pp.495-500
    • /
    • 2003
  • UV-induced graft polymerization of glycidyl methacrylate (GMA) to a polypropylene (PP) membrane was carried out in the vapor phase with benzophenone (BP) as a photoinitiator. Attenuated total reflection Fourier transform infrared spectroscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM) were utilized to characterize the copolymer. The degree of grafting increased with increasing reaction time, increased UV irradiation source intensity, and increased immersion concentration of the BP solution. The optimum synthetic condition for the PP-g-GMA membrane was obtained with a reaction time of 2 hrs, a UV irradiation source intensity of 450 W, and an immersion concentration of the BP solution of 0.5 mol/L. The pure water flux decreased upon increasing the degree of grafting and increasing the amount of diethylamino functional group introduced. The analysis of AFM and SEM images shows that the graft chains and diethylamino groups of PP-g-GMA grew on the PP membrane surface, resulting in a change in surface morphology.

YSZ 박막의 성장속도와 특성에 미치는 전기화학증착의 조건의 영향(II) (Influences of Electrochemical Vapor Deposition Conditions on Growth Rate ad Characteristics of YSZ Thin films(II))

  • 박동원;전치훈;김대룡
    • 한국세라믹학회지
    • /
    • 제33권3호
    • /
    • pp.355-361
    • /
    • 1996
  • Yttria stabilized zirconia (YSZ) thin films were prepared by the electrochemical vapor deposition (EVD) method on the porous Al2O3 substrates. Y2O3 mol% of thin film was linearly increased with yttrium mole fraction of vapor phase. As yttrium mole fraction(Zyc13=0.18) increased dense and faceted thin films were enhanced. However as the yttrium mole fraction (Zyc13=0.04) decreased porous thin films with monoclinnic phase prevailed. With increasing pressure difference of substrate sides penetration depth decreased porosity and amount of monoclinic phase in the films increased.

  • PDF

Fabrication of Single Crystal Poly(3,4-ethylenedioxythiophene) Nanowire Arrays

  • Cho, Bo-Ram;Sung, Myung-M.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.537-537
    • /
    • 2012
  • We have studied a fabrication of vapor phase polymerized Poly(3,4-ethylenedioxythiophene) (PEDOT) nanowire arrays for the first time. The vapor-phase polymerization (VPP) technique is a bottom-up processing method that utilizes the organic arrangement of macromolecules to easily produce ordered aggregates, including on the nanoscale, or prepare thin films of self-assembled molecules, micropatterns, or modified microstructures of pure conducting polymers. Also, liquid-bridge-mediated nanotransfer molding (LB-nTM), which was reported as a new direct patterning method recently, is for the arrayed formation of two- or three-dimensional structures with feature sizes as small as tens of nanometers over large areas up to 4 inches across and is based on the direct transfer of various materials from a mould to a substrate through a liquid bridge between them. The PEDOT nanowires grown by VPP method and transferred on a substrate to use LB-nTM method have been fabricated to single crystal PEDOT nanowires investigated Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), X-Ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and electrical properties.

  • PDF