• Title/Summary/Keyword: Vapor injection

Search Result 180, Processing Time 0.029 seconds

NOx Emissions in Flameless Combustion of Kerosene-Air Mixture Jets Injected into Hot Burned Gas Stream from Combustion Wall

  • Aida, Naoki;Hayashi, Shigeru;Yamada, Hideshi;Kawakami, Tadashige
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.449-452
    • /
    • 2004
  • “Flameless combustion” of lean to ultra lean mixtures, supported by high-temperature burned gas, can resolve the dilemma between complete combustion versus ultra-low NOx emissions in gas turbine combustors. The characteristics of NOx emissions and combustion in “lean-lean” two-stage combustion were investigated for fuel vapor and droplets / air mixture jets injected from the main injection tube that was placed perpendicular to the combustor wall into the primary hot burned gas prepared by combustion of lean mixtures on a perforated flame holder. The present results clearly show that the ultra-low NOx combustion supported by the reaction of lean mixtures well mixed with the hot burned gas from the primary stage is much more advantageous in achieving ultra-low NOx emissions while maintaining high combustion efficiency.

  • PDF

APPLICATION OF RADIO-FREQUENCY (RF) THERMAL PLASMA TO FILM FORMATION

  • Terashima, Kazuo;Yoshida, Toyonobu
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.357-362
    • /
    • 1996
  • Several applications of radio-frequency (RF) thermal plasma to film formation are reviewed. Three types of injection plasma processing (IPP) technique are first introduced for the deposition of materials. Those are thermal plasma chemical vapor deposition (CVD), plasma flash evaporation, and plasma spraying. Radio-frequency (RF) plasma and hybrid (combination of RF and direct current(DC)) plasma are next introduced as promising thermal plasma sources in the IPP technique. Experimental data for three kinds of processing are demonstrated mainly based on our recent researches of depositions of functional materials, such as high temperature semiconductor SiC and diamond, ionic conductor $ZrO_2-Y_2O_3$ and high critical temperature superconductor $YBa_2Cu_3O_7-x$. Special emphasis is given to thermal plasma flash evaporation, in which nanometer-scaled clusters generated in plasma flame play important roles as nanometer-scaled clusters as deposition species. A novel epitaxial growth mechanism from the "hot" clusters namely "hot cluster epitaxy (HCE)" is proposed.)" is proposed.osed.

  • PDF

A New Trend of In-situ Electron Microscopy with Ion and Electron Beam Nano-Fabrication

  • Furuya, Kazuo;Tanaka, Miyoko
    • Applied Microscopy
    • /
    • v.36 no.spc1
    • /
    • pp.25-33
    • /
    • 2006
  • Nanofabrication with finely focused ion and electron beams is reviewed, and position and size controlled fabrication of nano-metals and -semiconductors is demonstrated. A focused ion beam (FIB) interface attached to a column of 200keV transmission electron microscope (TEM) was developed. Parallel lines and dots arrays were patterned on GaAs, Si and $SiO_2$ substrates with a 25keV $Ga^+-FIB$ of 200nm beam diameter at room temperature. FIB nanofabrication to semiconductor specimens caused amorphization and Ga injection. For the electron beam induced chemical vapor deposition (EBI-CVD), we have discovered that nano-metal dots are formed depending upon the beam diameter and the exposure time when decomposable gases such as $W(CO)_6$ were introduced at the beam irradiated areas. The diameter of the dots was reduced to less than 2.0nm with the UHV-FE-TEM, while those were limited to about 15nm in diameter with the FE-SEM. Self-standing 3D nanostructures were also successfully fabricated.

Technical Feasibility of Ethanol as a Fuel for Farm Diesel Engines (농용(農用) 디이젤 엔진 연료(燃料)로서의 에타놀 이용(利用)에 관(關)한 연구(硏究))

  • Ryu, Kwan Hee;Bae, Yeong Hwan;Yoo, Soo Nam
    • Journal of Biosystems Engineering
    • /
    • v.6 no.2
    • /
    • pp.1-8
    • /
    • 1982
  • The objective of this study was to find out the technical feasibility of ethanol-diesel fuel blends as a diesel engine fuel. Fuel properties essential to the proper operation of a diesel engine were determined for blends containing several concentrations of ethanol in No. 2 diesel fuel. A single-cylinder diesel engine for a power tiller was used for the engine tests, in which load, speed and fuel consumption rate were measured. The fuels used in tests were No. 2 diesel fuel and a blend containing 10-percent ethanol and 90-percent No. 2 diesel fuel. The results of the study are summarized as follows. 1. It was not possible to blend ethanol and No. 2 diesel fuel as a homogeneous solution even though anhydrous ethanol was used. The problem of blending ethanol in No. 2 diesel fuel could be solved by adding butanol about 5% of the amount of ethanol in the blends. 2. Because ethanol had a much lower boiling point ($78.3^{\circ}C$ under atmospheric pressure) than a diesel fuel, it was necessary to store ethanol-diesel fuel blends airtight in order to prevent them from evaporation losses of ethanol. 3. The addition of ethanol to No. 2 diesel fuel lowered the fuel viscosity and the cetane rating, but a blend of 10% ethanol and 90% diesel fuel had a viscosity and a cetane rating well above the KS minimum values for No. 2 diesel fuel. 4. At the rated speed, the specific fuel consumption of No.2 diesel fuel was lower than that of the 10% ethanol blend for the almost entire range of load. However, under the overload condition the specific fuel consumption was lower for the 10% ethanol blend. 5. Under the variable-speed full-load tests, both fuels produced approximately the same torque and power. At the speeds of 1600rpm or below, the specific fuel consumption of No. 2 diesel fuel was lower than that of the 10% ethanol blend. At the speeds of 1600rpm or above, however, the specific fuel consumption was lower for the 10% ethanol blend. 6. At the ambient temperature above $15^{\circ}C$, the use of the 10% ethanol blend in the engine created a vapor lock in the fuel injection pump and stalled the engine. The vapor locking problem was overcome by chilling the surroundings of the fuel injection pump and the cylinder head with water.

  • PDF

SynGas Production from Propane using GlidArc Plasma Reforming (부채꼴방전 플라즈마 개질을 이용한 프로판으로부터의 합성가스 생산)

  • Song, Hyoung-Oon;Chun, Young-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.323-328
    • /
    • 2006
  • The purpose of this paper was to investigate the reforming characteristics and optimum operating condition of the GlidArc-assisted $C_3H_8$ reforming reaction for the synthesis gas(SynGas) production without formation of carbon black from propane using GildArc plasma reforming. Also, in order to increase the hydrogen production and the propane conversion rate, 13 wt % nickel catalyst was filled into the catalytic reactor and parametric screening studies were conducted, in which there were the variations of vapor mole ratio$(H_2O/C_3H_8),\;CO_2$ mole ratio($CO_2/C_3H_8$), input power and injection flow rate. When the variations of vapor mole ratio, $CO_2$ mole ratio, input power and injection flow rate were 1.86, 0.48, 1.37 kW and 14 L/min, respectively, the conversion rate of the propane reached its most optimal condition, or 62.6%. Under the condition mentioned above, the dry basic concentrations of the SynGas were $H_2\;44.4%,\;CO\;18.2%,\;CH_4\;11.2%,\;C_2H_2\;2.0%,\;C_3H_6\;1.6%,\;C_2H_4\;0.6%\;and\;C_3H_4$ 0.4%. The conversion rate of carbon dioxide was 29.2% and the concentration ratio of hydrogen to carbon monoxide($H_2/CO$) in the SynGas was 2.4.

Metalorganic Chemical Vapor Deposition of Copper Films on TiN Substrates Using Direct Liquid Injection of (hfac)Cu(vtmos) Precursor ((hfac)Cu(vtmos)의 액체분사법에 의한 TiN 기판상 구리박막의 유기금속 화학증착 특성)

  • Jun, Chi-Hoon;Kim, Youn-Tae;Kim, Dai-Ryong
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1196-1204
    • /
    • 1999
  • We have carried out copper MOCVD(metalorganic chemical vapor deposition) onto the reactive sputtered PVD-TiN and rapid thermal converted RTP-TiN substrates using direct liquid injection for effective delivery of the (hfac)Cu(vtmos) [$C_{10}H_{13}O_{5}CuF_{6}$Si: 1,1,1,5,5,5-hexafluoro-2,4- pentadionato (vinyltrimethoxysilane) copper (I)] precursor. Especially, the influences of deposition conditions and the substrate type on growth rate, crystal structure, microstructure, and electrical resistivity of copper deposits have been discussed. It is found that the film growth with 0.2ccm precursor flow rate become mass-transfer controlled up to Ar flow rate of 200sccm and pick-up rate controlled at a vaporizer above 1.0Torr reactor pressure. The surface-reaction controlled region from 155 to 225$^{\circ}C$ at 0.6Torr reactor pressure results in the apparent activation energies of 12.7~14.1kcal/mol, and above 224$^{\circ}C$ the growth rate with $H_2$ addition could be improved compared to the pure Ar carrier. The Cu/RTP-TiN structures which have high copper nucleation density in initial stage of growth show more pronounced (111) preferred orientations and lower electrical resistivities than those on PVD-TiN. The variation of electrical resistivity with substrate temperature reflects the three types of film microstructure changes, showing the lowest value for the deposit at 165$^{\circ}C$ with small grains of good contacts.

  • PDF

A Systematic Review of Injury or Poisoning Related to Mercury Thermometer (수은 체온계와 관련된 손상 및 중독에 대한 체계적 고찰)

  • Lee, Yo Seop;Joo, Young Seon;You, Je Sung;Chung, Sung Phil;Chung, Hyun Soo;Lee, Hahn Shick
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.12 no.1
    • /
    • pp.22-30
    • /
    • 2014
  • Purpose: The purpose of this systematic review was to evaluate the evidence regarding injury and poisoning associated with the clinical mercury thermometer. Methods: Electronic literature searches were conducted for identification of relevant studies and case reports of injury and poisoning associated with the clinical mercury thermometer. The search outcomes were limited to literature with English and Korean languages published from 1966. Studies related to occupational mercury exposure, or mercury exposure from sphygmomanometer, barometer, and fluorescent light were excluded. Results: A total of 60 reports, including 59 case reports, were finally included. Of those, nine cases pertained to an intact thermometer as a foreign body, 25 injuries were related to a thermometer, and 26 cases involved exposures to mercury from a broken thermometer. Case reports were classified according to severity into 16 mild, 41 moderate, and two severe cases. Two cases of mortality were reported, one was deliberate intravenous injection of mercury and the other was acute vapor inhalation of mercury from broken thermometers. Conclusion: Findings of this systematic review suggested that the mercury thermometer could cause various forms of poisoning and injury. In particular, inhalation of mercury vapor from a broken thermometer can lead to systemic toxicity requiring chelating therapy.

  • PDF

Analysis of Ventilation Performance of PCVD Facility for Solar Cell Manufacturing (Explosion Prevention Aspect) (태양전지 제조용 PCVD설비의 환기 성능 분석(폭발 방지 측면))

  • Lee, Seoung-Sam;An, Hyeong-hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.5
    • /
    • pp.35-40
    • /
    • 2022
  • PCVD (Plasma Chemical Vapor Deposition), a solar cell manufacturing facility, is a facility that deposits plasma generated in a chamber (NH3, SIH4, O2 on a wafer. In the PCVD facility, gas movement and injection is performed in the gas cabinet, and there are many leak points inside because MFC, regulator, valve, pipe, etc. are intricately connected. In order to prevent explosion in case of leakage of NH3 with an upper explosive limit (UEL) of 33.6% and a lower explosive limit (LEL) of 15%, the dilution capacity must be capable of allowing the concentration of NH3 to be out of the explosive range. This study was analyzed using the CFD analysis technique, which can confirm the dilution ability in 3D and numerical values when NH3 gas leaks from the existing PCVD gas cabinet. As a result, it was concluded that it corresponds to medium dilution and that testicular ventilation is possible through facility improvement.

pH Control of Feed Water for HRSG with Additional Injection of NH3 (암모니아 추가 주입에 의한 배열회수보일러 급수의 수소이온농도 조절)

  • Mok, Yong-kang;Moon, Seung-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.11 no.2
    • /
    • pp.32-38
    • /
    • 2015
  • This study was conducted on combined cycle power plant consisting of HRSG with integral deaerator type to avoid tube failures of low pressure evaporator tubes. Based on the observation of pH variation at the discharge of boiler feed water pump by continuous pH measurement for a period of time, it was identified that pH of feed water is getting reduced as ammonia is distributed into vapor and liquid depending on the distribution ratio of ammonia in the LP drum after the deaerator. To solve this problem, the counterplan was prepared by reexamination of ammonia injection point and quantity. In conclusion, it was accomplished that 9.2~9.6 is the optimized pH range for boiler feed water by arranging additional piping for ammonia to inject directly to LP drum.

  • PDF

A Study on Performance of Initial Blowoff Flow for a Fuel Pump with Various Temperature and Composition Condition in LPG Engine (자동차용 LPG 펌프의 온도 및 연료조성에 따른 초기토출성능에 관한 연구)

  • Park, Cheol-Woong;Kim, Chang-Up;Choi, Kyo-Nam
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.12-17
    • /
    • 2008
  • The In recent years, the need for more fuel-efficient and lower-emission vehicles has driven the technical development of alternative fuels such as LPG (Liquefied Petroleum Gas) which is able to meet the limits of better emission levels without many modifications to current engine design. LPG has a high vapor pressure and lower viscosity and surface tension than diesel and gasoline fuels. These different fuel characteristics make it difficult to directly apply the conventional gasoline or diesel fuel pump. In this study, experiments are performed to get initial performance and efficiency of the fuel pump under different condition of the temperature and composition of fuel. The characteristics of vane type fuel pump were investigated to access the applicability on LPLi engine.

  • PDF