• Title/Summary/Keyword: Vapor flow

Search Result 973, Processing Time 0.028 seconds

APPLICATION OF CFD SIMULATION IN SIC-CVD PROCESS (SiC-CVD 공정에서 CFD 시뮬레이션의 응용)

  • Kim, J.W.;Han, Y.S.;Choi, K.;Lee, J.H.
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.67-71
    • /
    • 2013
  • Recently, the rapid development of the semiconductor industry induces the prompt technical progress in the area of device integration and the application of large diameter wafers for the price competitiveness. As a result of the usage of large wafers in the semiconductor industry, the silicon carbide components which have layers of silicon carbide on graphite or RBSC substrates is getting widely used due to the advantages of SiC such as high hardness and strength, chemical and ionic resistant to all the environments superior than other ceramic materials. For the uniform and homogeneous deposition of silicon carbide on these huge components, it needs to know about the gas flow in the CVD reactor, not only for the delicate adjustment of the process variables but more essentially for the cost reduction for the shape change of specimens and their holders on the stage of reactor. In this research, the CFD simulation is challenged for the prediction of the inner distribution of the gas velocity. Chemical reaction simulation is used to predict the distribution of concentration of the reacting gas with the rotating velocity of the stage. With the increase of the rotating speed, more uniform distribution of the reacting gas on the surface of the stage was obtained.

Application of Semi-continuous Ambient Aerosol Collection System for Elemental Analysis (대기입자의 원소성분 배출특성연구를 위한 반-연속식 입자채취시스템 적용)

  • Park, Seung-Shik;Ko, Jae-Min;Lee, Dong-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.1
    • /
    • pp.39-51
    • /
    • 2012
  • Aerosol slurry samples were collected in 60-min interval using Korean Semi-continuous Elements in Aerosol Sampler (KSEAS) between May 19 and June 6, 2010 at an urban site of Gwangju. The $PM_{2.5}$ samples were collected with a flow rate of 16.7 L/min and particles are grown by condensation of water vapor in a condenser maintained at ${\sim}5^{\circ}C$ after saturation by direct injection of steam. The resulting droplets are collected in a liquid slurry with a airdroplet separator. Concentrations of 16 elements (Al, Fe, Mn, Ca, K, Cu, Zn, Pb, Cd, Cr, Ti, V, Ni, Co, As, Se) in the collected slurry samples were determined off-line by ICP-MS. KSEAS sample analysis encompassed the sampling periods for which 24-hr average elemental species concentrations were calculated for comparison with those derived from 24-hr integrated filter samples. Relationship between elemental species measured by two methods indicated high correlation coefficients (r), mostly greater than r of 0.80. However, we note that concentrations of Al, K, Ca, Mn, and Fe, which are often associated with crustal elemental particles, in the KSEAS samples, were substantially lower (1.4~11 times) than those found in the typical filter-based samples. This discrepancy is probably due to difficulties in transferring insoluble dust particles to the collection vials in the KSEAS. Temporal profiles of elemental concentrations indicate that some transient events in their concentrations are observed over the sampling periods. For the elemental species studied, atmospheric concentrations during the transient events increased by factors of 4 in Mn~80 in Zn, compared to their background levels. Principle component analyses were applied to the hourly KSEAS data sets to identify sources affecting the concentrations of the metal constituents observed. In this study, we conclude that hourly measurements for particle-bound elemental constituents were extremely useful for revealing the short-term variability in their concentrations and developing insights into their sources.

The Studies of Photocatalyst Development and the Optimum Operation Conditions for the Removal of Ammonia in a Mixed Reactor of Liquid-vapor Phase (기-액 복합 광반응기에서의 악취성 암모니아 제거를 위한 촉매개발과 반응시스템의 최적조건 색출 연구)

  • Kim, Hae-Ri;Jeon, Min-Kyu;Kim, Joon-Woo;Joo, Gwang-Tae;Choung, Suk-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.512-522
    • /
    • 2008
  • Ammonia is a major compound of odor in livestock house. To enhance the performance of ammonia oxidation (decomposition). the gas-liquid, two phase photocatalytic oxidation system was designed and prepared in this study. Commercial P-25 as $TiO_2$ catalyst was used for ammonia decomposition. V/P-25 catalyst prepared by sol gel method was also used for the removal of by-producted $NO_x$ in $NH_3$ oxidation reaction. When $TiO_2$ was used as a photocatalyst, the conversion to $N_2$ in ammonia decomposition reached above 90% until 200hr (The air flow rate of 4L/min with the ammonia concentration up to 25ppm.). However, considerable amounts of NO and $NO_2$ were formed as a result of $NH_3$ oxidation (as a by-product). Therefore, we added Vanadia impregnated $TiO_2$(P-25) catalyst for the removal of $NO_x$ at the end of reaction trail. The results of a pilot-scale operation were successful to achieve the simultaneous removal of $NH_3\;and\;NO_x$ about 81 and 87%, respectively.

Study on R-l34a, R-407C, and R-410A Condensation Performance in the Oblong Shell and Plate Heat Exchanger (오블롱 셀 플레이트 열교환기에서의 R-l34a, R-407C, R-410A의 응축성능에 관한 실험적 연구)

  • Park, Jae-Hong;Kim, Young-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1535-1548
    • /
    • 2004
  • Condensation heat transfer experiments were conducted with the oblong shell and plate heat exchanger without oil in a refrigerant loop using R-l34a, R-407C and R-410A. An experimental refrigerant loop has been developed to measure the condensation heat transfer coefficient h$_{r}$ and frictional pressure drop $\Delta$p$_{f}$ of the various refrigerants in a vertical oblong shell and plate heat exchanger. The effects of the refrigerant mass flux(40∼80kg/$m^2$s), average heat flux(4∼8kW/$m^2$), refrigerant saturation temperature(30∼4$0^{\circ}C$) and vapor quality of refrigerants on the measured data were explored in detail. Similar to the case of a plate heat exchanger, even at a very low Reynolds number, the flow in the oblong shell and plate heat exchanger remains turbulent. A comparison of the performance of the various refrigerants revealed that R-410A had the highest heat transfer performance followed by R-l34a, and R-407C had the lowest performance of the refrigerants tested. The pressure drops were also reported in this paper. The pressure drops for R-410A were approximately 45% lower than those of R-l34a. R-407C had 30% lower pressure drops than R-l34a. Experimental results were compared with several correlations which predicted condensation heat transfer coefficients and frictional pressure drops. Comparison with the experimental data showed that the previously proposed correlations gave unsatisfactory results. Based on the present data, empirical correlations of the condensation heat transfer coefficient and the friction factor were proposed.tor were proposed.sed.

Measurement of Size Distributions of Submicron Electrosprays Using a Freezing Method and an Image Processing Technique (냉각법 및 영상 처리기법을 이용한 서브마이크론 정전분무 액적의 크기분포 측정)

  • Gu, Bon-Gi;Kim, Sang-Su;Kim, Yu-Dong;Lee, Sang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1400-1407
    • /
    • 2001
  • The size distributions of electrospray droplets from the Taylor cone in cone-jet mode are directly measured by using a freezing method and a transmission electron microscope (TEM) image processing technique. These results are compared with the data obtained by an aerodynamic size spectrometer (TSI Aerosizer DSP). The use of glycerol seeded with NaI and a freezing method make it possible to sample droplets with their original sizes preserved. Since pictures of droplets are taken with TEM with very low vapor pressure of the solution, evaporation is suppressed by freezing. For liquid flow rates below 1 nl/sec, the measured droplet diameters by the TEM image processing technique and the aerosizer are in the range of 0.25 to 0.32 m add 0.3B to 0.40m, respectively. Comparing the TEM data with the aerosizer measurements, it has been revealed that the TEM image processing technique can afford more accurate values of droplet size distributions in the submicron range of 0.1 to 0.4m.

Evaporation Heat Transfer and Pressure Drop of $CO_2$ in a Small diameter Tube (세관내 이산화탄소의 증발 열전달 및 압력강화)

  • Jang, Seong-Il;Choi, Sun-Muk;Kim, Dae-Hui;Park, Ki-Won;Oh, Hoo-Kyu
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.189-194
    • /
    • 2005
  • The evaporation heat transfer and pressure drop of $CO_2$ in a small diameter tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator(test section). The test section was made of a horizontal stainless steel tube with the inner diameter of 4.57 mm, and length of 4 m. The experiments were conducted at mass flux of 200 to 700 $kg/m^2s$, saturation temperature of $0^{\circ}C$ to $20^{\circ}C$, and heat flux of 10 to 20 $kW/m^2$ . The test results showed the evaporation heat transfer of $CO_2$ has great effect on more nucleate boiling than convective boiling. The evaporation heat transfer coefficients of $CO_2$ are highly dependent on the vapor quality, heat flux and saturation temperature. The evaporation pressure drop of C02 are highly dependent on the mass flux. In comparison with test results and existing correlations, correlations failed to predict the evaporation heat transfer coefficient and pressure drop of $CO_2$, therefore, it is necessary to develop reliable and accurate predictions determining the evaporation heat transfer coefficient and friction pressure drop of $CO_2$ in a horizontal tube.

  • PDF

An Experimental Study on Composition Characteristics of SiO$_2$/TiO$_2$/Multicomponent Particle Generated in a Coflow Diffusion Flame (화염중 발생하는 SiO$_2$/TiO$_2$/다성분입자의 조성특성에 관한 실험적 연구)

  • Kim, Tae-O;Seo, Jeong-Su;Choe, Man-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.9
    • /
    • pp.1175-1182
    • /
    • 2001
  • Chemical compositions of polydisperse SiO$_2$/TiO$_2$multicomponent aggregates were measured for different heights from the burner surface and different mobility diameters of aggregates. SiO$_2$/TiO$_2$multicomponent particles were generated in a hydrogen/oxygen coflow diffusion flame from two sets of precursors: TTIP(titanium tetraisopropoxide), TEOS(tetraethylorthosilicate). To maintain 1:1 mole ratio of TTIP:TEOS vapor, flow rate of carrier gas $N_2$was fixed at 0.6lpm for TTIP, at 0.1lpm for TEOS. In-situ sampling probe was used to supply particles into DMA(differential mobility analyzer) which was calibrated with using commercial DMA(TSI, model 3071A) and classifying monodisperse multicomponent particles. Classified monodisperse particles were collected with electrophoretic collector. The distributions of composition from particles to particle were determined using EDS(energy dispersive spectrometry) coupled with TEM(transmission electron microscope). The chemical(atomic) compositions of classified monodisperse particle were obtained for different heights; z=40mm, 60mm, 80mm. The results suggested that the chemical(atomic) composition of SiO$_2$decreased with the height from burner surface and the composition of SiO$_2$and TiO$_2$approached to the value of 1 to 1 fat downstream. It is also found that the composition of SiO$_2$decreases as the mobility diameter of aggregate increases.

An Experimental Study on Composition Characteristics of $SiO_2/TiO_2$ Multicomponent Particle in Coflow Diffusion Flame (화염중 발생하는 $SiO_2/TiO_2$ 다성분입자의 조성특성에 관한 실험적 연구)

  • Kim, Tae-Oh;Suh, Jeong-Soo;Choi, Man-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.441-446
    • /
    • 2000
  • Chemical compositions of monodisperse $SiO_2/TiO_2$ multicomponent aggregates were measured for different heights from the burner surface and different mobility diameters of aggregates. $SiO_2/TiO_2$ multicomponent particles were generated in a hydrogen/oxygen coflow diffusion flame from two sets of precursors: TTIP (titanium tetraisopropoxide), TEOS(tetraethylorthosilicate). To maintain 1:1 mole ratio of TTIP:TEOS vapor theoretically, flow rate of carrier gas $N_2$ was fixed at 0.61pm for TTIP, at 0.11pm for TEOS. In situ sampling probe was used to supply particles into differential mobility analyzer(DMA) which was calibrated with using commercial DMA(TSI 3071A) and classifying monodisperse multicomponent particles. Classified particles were collected with electrophoretic collector. The distributions of composition from particle to particle were determined using EDS (energy dispersive spectrometry) coupled with TEM (transmission electron microscope). The chemical (atomic) compositions of classified monodisperse particle were obtained for different heights; z=40mm, 60mm, 80mm. The results suggested that the atomic composition of $SiO_2$ decreased with the height from burner surface and the composition of $SiO_2$ and $TiO_2$ approached to the value of 1 to 1 in far downstream. It is also found that the composition of $SiO_2$ decreases as the mobility diameter of aggregate increases.

  • PDF

Characteristics of Bovine Teeth Whitening in Accordance with Gas Environments of Atmospheric Pressure Nonthermal Plasma Jet

  • Sim, Geon Bo;Kim, Yong Hee;Kwon, Jae Sung;Park, Daehoon;Hong, Seok Jun;Kim, Young Seok;Lee, Jae Lyun;Lee, Gwang Jin;Lim, Hwan Uk;Kim, Kyung Nam;Jung, Gye Dong;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.250.2-250.2
    • /
    • 2014
  • Currently, teeth whitening method which is applicable to dental surgery is that physician expertises give medical treatment to teeth directly dealed with a high concentration of hydrogen peroxide and carbamide peroxide. If hydrogen peroxide concentration is too high for treatment of maximized teeth whitening effect [1], it is harmful to the human body [2]. To the maximum effective and no harmful teeth whitening effect in a short period of time at home, we have observed the whitening effect using carbamide peroxide (15%) and a low-temperature atmospheric pressure plasma jet which is regulated by the Food and Drug Administration. The gas supplied conditions of the non-thermal atmospheric pressure plasma jet was with the humidified (0.6%) gas in nitrogen or air at gas flow rate of 1000 sccm. Also, the measurement of chemical species from the jet was carried out using the optical emission spectroscopy (OES), the evidence of increased reactive oxygen species compared to non-humidified plasma jet. We have found that the whitening effect of the plasma is very excellent through this experiment, when bovine teeth are treated in carbamide peroxide (15%) and water vapor (0.2 to 1%). The brightness of whitening teeth was increased up to 2 times longer in the CIE chromaticity coordinates. The colorimetric spectrometer (CM-3500d) can measure color degree of whitening effect.

  • PDF

Environmentally Friendly Preparation of Functional Nanomaterials and Their Application

  • Lee, Sun-Hyung;Teshima, Katsuya;Endo, Morinobu;Oishi, Shuji
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.5.1-5.1
    • /
    • 2010
  • One of the most important environmental problems is global warming. Global warming is caused by increase in the amounts of water vapor, methane, carbon dioxide and other gases being released into the atmosphere as a result of the burning of fossil fuels. It has thus become important to reduce fossil fuel use. Environmentally friendly preparation of functional materials has, therefore, attracted much interest for environmental problems. Furthermore, nature mimetic processes are recently been of great interest as environmentally friendly one. There have been many studies on fabrication of various functional nanocrystals. Among various nanocrystal fabrication techniques, flux growth is an environmentally friendly, very convenient process and can produce functional nanocrystals at temperatures below the melting points of the solutes. Furthermore, this technique is suitable for the synthesis of crystals having an enhedral habit. In flux growth, the constituents of the materials to be crystallized are dissolved in a suitable flux (solvent) and crystal growth occurs as the solution becomes critically supersaturated. The supersaturation is attained by cooling the solution, by evaporation of the solvent or by a transport process in which the solute is made to flow from a hotter to a cooler region. Many kinds of oxide nanocrystals have been grown in our laboratory. For example, zero- (e.g., particle), one- (e.g., whisker and tube) and two-dimensional (e.g., sheet) nanocrystals were successfully grown by flux method. Our flux-growth technique has some industrial and ecological merits because the nanocrystal fabrication temperatures are far below their melting points and because the used reagents are less harmless to human being and the environment.

  • PDF