• Title/Summary/Keyword: Vapor flow

Search Result 973, Processing Time 0.026 seconds

An experimental investigation of thermodynamic performance of R-22 alternative blends (R-22 대체용 혼합냉매의 열역학적 성능에 대한 실험연구)

  • Hwang, E.P.;Kim, C.N.;Park, Y.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.1
    • /
    • pp.82-91
    • /
    • 1997
  • R-410a and R-407c witch have the best potential among the substances being considered as R-22 alternatives were tested as "drop in" refrigerants against a set R-22 baseline tests for comparison. The performance evaluations were carried out in a psychrometric calorimeter test facility using the residential split-type air conditioner under the ARI rating conditions. Other than the use of different lubricant and a hand-operated expansion valve, one of the commercial systems was selected for the experiment. Performance characteristics were measured; compressor power, capacity, VCR, mass flow rate and COP. The tests showed that R-407c can be directly applied to the existing refrigeration system because of its similar vapor pressure and other thermopysical properties with those of R-22. However, it required change to the volume flow rate of compressor in order to achieve the similar performance with R-22 because of its relatively small VCR and capacity. Meanwhile, R-410a has too high a vapor pressure to be applied to the existing system and this feature results in relatively low COP of the system compared to that of R-22. But this could be improved by changing compressor design considering R-410a's relatively high VCR and capacity compared to those of R-22.

  • PDF

Effects of Chemical Vapor Deposition Parameters on The Hardness and the Structural Characteristics of TiN Film (TiN피막의 경도 및 구조적 특성에 미치는 화학증착 조건의 영향)

  • Shin, Jong-Hoon;Lee, Seong-Rae;Baek, Young-Hyun
    • Journal of the Korean institute of surface engineering
    • /
    • v.20 no.3
    • /
    • pp.106-117
    • /
    • 1987
  • The microhardness and the structural characteristics of the chemically vapor deposited TiN film on the 430 stainless steel substrate have been investigated with various deposition parameters such as the deposition time, the total flow rate, the flow rate ratio $(H_2/N_2)$, and the deposition temperature. The most important factor to affect the microhardness of the TiN film in this study was the denseness of the structure in connection with the degree of the lattice strain. The relationship between the lattice parameter changes and the grain size variation under all deposition conditions generally followed the grain boundary relaxation model. The (111) preferred orientation prevailed in the early stage of the deposition conditions, however, the (200) preferred orientation was developed in the later stage. The surface morphology at optimum conditions displayed a dense diamond shaped structure and the microhardness of the films was high (1700-2400Hv) regardless of the type of the substrates used.

  • PDF

Two-Phase Flow Field Simulation of Horizontal Steam Generators

  • Rabiee, Ataollah;Kamalinia, Amir Hossein;Hadad, Kamal
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.92-102
    • /
    • 2017
  • The analysis of steam generators as an interface between primary and secondary circuits in light water nuclear power plants is crucial in terms of safety and design issues. VVER-1000 nuclear power plants use horizontal steam generators which demand a detailed thermal hydraulics investigation in order to predict their behavior during normal and transient operational conditions. Two phase flow field simulation on adjacent tube bundles is important in obtaining logical numerical results. However, the complexity of the tube bundles, due to geometry and arrangement, makes it complicated. Employment of porous media is suggested to simplify numerical modeling. This study presents the use of porous media to simulate the tube bundles within a general-purpose computational fluid dynamics code. Solved governing equations are generalized phase continuity, momentum, and energy equations. Boundary conditions, as one of the main challenges in this numerical analysis, are optimized. The model has been verified and tuned by simple two-dimensional geometry. It is shown that the obtained vapor volume fraction near the cold and hot collectors predict the experimental results more accurately than in previous studies.

Development on the High Concentration Ozone Generator System for the Semiconductor Photoresist Strip Process (반도체 감광막 제거공정 적용을 위한 고농도 오존발생장치 개발)

  • Son, Young-Su;Ham, Sang-Yong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.12
    • /
    • pp.591-596
    • /
    • 2006
  • we have been developed on the ultra high concentration ozone generator system which is the core technology in the realization of the semiconductor photoresist strip process using the ozone-vapor chemistry. The proposed ozone generator system has the structure of the surface discharge type which adopt the high purity ceramic dielectric tube. We investigate the performance of the proposed ozone generator system experimentally and the results show that the system has very high ozone concentration characteristics of $19.7[wt%/O_2]$ at the flow rate of $0.3[{\ell}/min]$ of each discharge cell. As a result of the silicon wafer photoresist strip test, we obtained the strip rate of about 400[nm/min] at the ozone concentration of $16[wt%/O_2]$ and flow rate of $8[{\ell}/min]$. So, we confirmed that it's possible to use the proposed high concentration ozone generator system for the ozone-vapor photoresist strip process in the semiconductor and FPD industry.

Photocatalytic Degradation of Gaseous Acetaldehyde through TiO2-Coated Fly Ash Composites (TiO2 코팅 석탄회 복합체의 기상 Acetaldehyde 광분해 특성)

  • Shin, Dae-Yong;Kim, Kyung-Nam
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.1
    • /
    • pp.43-47
    • /
    • 2008
  • The photocatalyst of $TiO_2$ coated on a fly ash composites (TCF) was prepared from precipitant dropping method to remove the acetaldehyde by photocatalytic reaction. The TCF were characterized by crystal aize, crystal structure and specific surface area. The photodegradation of acetaldehyde has been investigated using a UV-illuminated fixed photocatalytic reactor with TCF catalyst and P-25 catalyst in gas phase. The effect of photodegradation reaction conditions, such as initial concentration of acetaldehyde, concentration of oxidant in mixed gas and the light intensity on the photodegradation of acetaldehyde were investigated. P-25 catalyst showed the highest photodegradation of acetaldehyde and anatase $TiO_2$ coated TCF showed higher decomposition rate than rutile coated TCF. The photodegradation rate of acetaldehyde increased with the decrease of flow rate, initial concentration of acetaldehyde ($C_i$) and water vapor, however, it was increased with the increas of UV light intensity. The optimum conditions were weight of TCF=10 g, flow rate=50 ml/min $C_i$=100 ppm, concentration of oxygen=20%, concentration of water vapor=100 ppm.

The study of SiON thin film for optical properlies (SiON 박막의 광학적 특성에 대한 연구)

  • 김도형;임기주;김기현;김현석;김상식;성만영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.247-250
    • /
    • 2001
  • We studied optical properties of SiON thin-film in the applications of optical waveguide. SiON thin-film was grown in 300$^{\circ}C$ by PECVD(plasma enhanced chemical vapor deposition) system. The change of SiON thin-film composition and refractive Index was studied as a function of varying NH$_3$ gas flow rate. As NH$_3$ gas flow rate was increased, Quantity of N and refractive index were increased at the same time. By the results, we could form the SiON thin-film to use of a waveguide with refractive index of 1.6. We analyzed the conditions of the thin-film with FTIR(fourier transform infrared) and OES(optical emission spectroscopy). N-H bonding(3390cm$\^$-1/) can be removed by thermal annealing. And we could observe the SiH bonding state and quantity by OES analysis in SiH$_4$

  • PDF

A study on the pulse boiling occurring inside the liquid pool of a closed two-phase thermosyphon (밀폐형 2상 열사이폰의 Pool 내부 Pulse Boiling에 관한 연구)

  • Kim, Cheol-Ju;Mun, Seok-Hwan;Gang, Hwan-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1254-1261
    • /
    • 1997
  • Pulse boiling, the unsteady periodic boiling phenomenon appearing in the evaporator of thermosyphons was investigated by many researchers. In the present study investigations were conducted to examine the evolution of flow patterns at the evaporator, and changes in thermodynamic state that each of liquid pool and vapor experiences through 1 cycle of pulse boiling process. For wall and liquid pool the degree of superheat for the onset of nucleation was examined. It revealed that the degree of superheat increased with the increase of pulse period, reaching to 16.5 deg.C and 23 deg.C for liquid pool and evaporator wall respectively at .tau.=80 sec. The data on flow patterns obtained through series of operation tests were plotted in the coordinates of heat flux and vapor pressure to get a regime map. Further this map could be used to figure out the conditions of pulse boiling for a thermosyphon.

Deposition of a-SiN:H by PECVD (PECVD에 의한 질화 실리콘 박막의 증착)

  • Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2095-2099
    • /
    • 2007
  • In this paper, the optimum amorphous silicon nitride thin film is deposited using plasma enhanced chemical vapor deposition(PECVD). Amorphous silicon nitride is deposited using $SiH_4$ and $NH_3$ gas. At this time, electrical and optical characteristics of amorphous silicon nitride and deposition rate are changed under deposition condition such as $SiH_4$, $NH_3$ and $N_2$ gas flow rate, chamber pressure, rf power and substrate temperature. From the experimental results, we can estimate that the deposition condition makes a good electrical characteristic of amorphous silicon nitride thin film.

The Study on the Uniformity, Deposition Rate of PECVD SiO2 Deposition

  • Eun Hyeong Kim;Yoon Hee Choi;Hyeon Ji Jeon;Woo Hyeok Jang;Garam Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.87-91
    • /
    • 2024
  • SiO2, renowned for its excellent insulating properties, has been used in the semiconductor industry as a valuable dielectric material. High-quality SiO2 films find applications in gate spacers and interlayer insulation gap-fill oxides, among other uses. One of the prevalent methods for depositing these SiO2 films is plasma enhanced chemical vapor deposition (PECVD) favored for its relatively low processing costs and ability to operate at low temperatures. However, compared to the increasingly utilized atomic layer deposition (ALD) method, PECVD exhibits inferior film characteristics such as uniformity. This study aims to produce SiO2 films with uniformity as close as possible to those achieved by ALD through the adjustment of PECVD process parameters. we conducted a total of nine PECVD processes, varying the process time and gas flow rates, which were identified as the most influential factors on the PECVD process. Furthermore, ellipsometry analysis was employed to examine the uniformity variations of each process. The experimental results enabled us to elucidate the relationship between uniformity and deposition rate, as well as the impact of gas flow rate and deposition time on the process outcomes. Additionally, thickness measurements obtained through ellipsometer facilitate the identification of optimal process parameters for PECVD.

  • PDF

Investigation of InN nanograins grown by hydride vapor phase epitaxy (수소 화물 기상 증착법을 이용한 InN 나노 알갱이 성장에 관한 연구)

  • Jean, Jai-Weon;Lee, Sang-Hwa;Kim, Chin-Kyo
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.479-482
    • /
    • 2007
  • InN nanograins were directly grown on $0.3^{\circ}$-miscut (toward M-plane) c-plane sapphire substrates by hydride vapor phase epitaxy (HVPE) and their growth characteristics were investigated by utilizing x-ray scattering. Depending on the various growth parameters, the formation of InN was sensitively influenced. Six samples were grown by changing HCl flow rate, the substrate temperature and Ga/In source zone temperature. All the samples were grown on unintentionally $NH_3-pretreated$ sapphire substrates. By increasing the flow rate of HCl from 10 sccm to 20 sccm, the formation of GaN grains with different orientations was observed. On the other hand, when the substrate temperature was raised from $680^{\circ}C$ to $760^{\circ}C$, the increased substrate temperature dramatically suppressed the formation of InN. A similar behavior was observed for the samples grown with different source zone temperatures. By decreasing the source zone temperature from $460^{\circ}C$ to $420^{\circ}C$, a similar behavior was observed.