• Title/Summary/Keyword: Vapor deposition polymerization

Search Result 51, Processing Time 0.027 seconds

A study on the fabrication of PI thin films by VDP method (증착중합법에 의한 폴리이미드 박막의 작성에 관한 연구)

  • Kim, H.G.;Han, S.O.;Kim, J.S.;Park, K.H.;Jin, K.S.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1394-1396
    • /
    • 1994
  • Polyimide thin films were fabricated an using vapor deposition polymerization apportus, and their FT-IR and TGA characteristics were investigated. The peaks of $720cm^{-1}$ and $1380cm^{-1}$ show C=O stretch mode and C-N stretch mode, and that of the cured polyimide at $350^{\circ}C$ were sturated. $T_d$(Depolymerization temperature) was showed at $405^{\circ}C$ from research of thermal resistivity characteristics by TGA It was possible to fabrication of polyimide thin film by VDPM.

  • PDF

A Study on the Humidity Sensing Properties of Polyimide thin films prepared (진공증착중합법에 의해 제초된 폴리이미드 박막의 습도감지 특성에 관한 연구)

  • 황선양;김형권;이붕주;박구범;김영봉;이은학;이덕출
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.402-405
    • /
    • 1999
  • The Study of this paper is to establish the optimum fabricating condition of specimens using Vapor Deposition Polymerization Method which belongs to a mode of preparation of functional organic thin films with dry process and to develop thin film type humidity sensor which has good humidity sensitive Characteristics. Scanning electron microscopy Atomic force microscopy were used to analyze the characteristics of thin film and the basic structure of the humidity sensor is a parallel capacitor which consists of three layers of Al/PI/Al. The characteristics of fabricated samples were measured under various conditions and obtained linear characteristics in the range of 20∼80%RH independent of temperature change and low hysteresis characteristics.

  • PDF

The Electric Breakdown Chatacteristics of Polyimide Thin Films by Self Healing Method (자기절연회복법에 의한 폴리아미드 박막의 절연파괴특성)

  • Kim, Hyeong-Gweon;Lee Eun-Hak;Park, Jong-Kwan
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.2
    • /
    • pp.1-7
    • /
    • 1999
  • The polymide thin films were fabricated by vapor deposition polymerized method of dry processes and studied the electric breakdown characteristics by self healing method. Polyamic-acid(PAA) thin films prepared by vapor deposition-polymerization (VDP) from PMDA(Pyromellitic dianhydride) and DDE(4,4'-diaminodiphenyl ether) were changed to PI thin films by thermal curing. In the same sample, electric breakdown fields increase with increasing test number, and then saturated over test number of the 25th. When the curing temperatures were 200$^{\circ}C$, 250$^{\circ}C$, 300$^{\circ}C$ and 350$^{\circ}C$, the electric breakdown strengths of PI were 1.21MV/cm, 3.94MV/cm, 4.61MV/cm and 4.55MV/cm at the test number of 40th.

  • PDF

Amine functionalized plasma polymerized PEG film: Elimination of non-specific binding for biosensing

  • Park, Jisoo;Kim, Youngmi;Jung, Donggeun;Kim, Young-Pil;Lee, Tae Geol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.378.2-378.2
    • /
    • 2016
  • Biosensors currently suffer from severe non-specific adsorption of proteins, which causes false positive errors in detection through overestimation of the affinity value. Overcoming this technical issue motivates our research. Polyethylene glycol (PEG) is well known for its ability to reduce the adsorption of biomolecules; hence, it is widely used in various areas of medicine and other biological fields. Likewise, amine functionalized surfaces are widely used for biochemical analysis, drug delivery, medical diagnostics and high throughput screening such as biochips. As a result, many coating techniques have been introduced, one of which is plasma polymerization - a powerful coating method due to its uniformity, homogeneity, mechanical and chemical stability, and excellent adhesion to any substrate. In our previous works, we successfully fabricated plasmapolymerized PEG (PP-PEG) films [1] and amine functionalized films [2] using the plasma enhanced chemical vapor deposition (PECVD) technique. In this research, an amine functionalized PP-PEG film was fabricated by using the plasma co-polymerization technique with PEG 200 and ethylenediamine (EDA) as co-precursors. A biocompatible amine functionalized film was surface characterized by X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). The density of the surface amine functional groups was carried out by quantitative analysis using UV-visible spectroscopy. We found through surface plasmon resonance (SPR) analysis that non-specific protein adsorption was drastically reduced on amine functionalized PP-PEG films. Our functionalized PP-PEG films show considerable potential for biotechnological applications such as biosensors.

  • PDF

Electrical Properties and Preparation of 6FDA/4-4'DDE Polyimide Thin Films by Vapor Deposition Polymerization Method (진공증착중합법을 이용한 6FDA/4-4'DDE 폴리이미드 박막의 제조와 전기적 특성)

  • Hwang, S.Y.;Lee, B.J.;Kim, H.G.;Kim, Y.B.;Park, K.S.;Lim, H.C.;Kang, D.H.;Park, K.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1487-1489
    • /
    • 1998
  • In this paper, thin films of PI were fabricated VDPM of dry processes which are easy to control the film's thickness and hard to pollute due to volatile solvents. From FT-lR, PAA thin films fabricated by VDP were changed to PI thin films by thermal curing. From SEM, AFM and Ellipsometer experimental, as the higher curing temperatures the films thickness decreases and reflectance increases. Therefore, Pl could be fabricated stable by increasing curing temperature. The relative permitivity and dissipation loss factor were 3.7 and 0.008. Also, the resistivity was about $1.05{\times}10^{15}{\Omega}cm$ at $30^{\circ}C$.

  • PDF

Anti-corrosion Properties of SiOxCy(-H) thin Films Synthesized and Oxidized by Atmospheric Pressure Dielectric Barrier Discharge (대기압 유전체배리어방전으로 합성 및 산화 처리된 SiOxCy(-H) 박막의 부식방지 특성)

  • Kim, Gi-Taek;Kim, Yoon Kee
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.5
    • /
    • pp.201-206
    • /
    • 2020
  • A SiOxCy(-H) thin film was synthesized by atmospheric pressure dielectric barrier discharge(APDBD), and a SiO2-like layer was formed on the surface of the film by oxidation treatment using oxygen plasma. Hexamethylcyclotrisiloxane was used as a precursor for the SiOxCy(-H) synthesis, and He gas was used for stabilizing APDBD. Oxygen permeability was evaluated by forming an oxidized SiOxCy(-H) thin film on a PET film. When the single-layer oxidized SiOxCy(-H) film was coated on the PET, the oxygen gas permeability decreased by 46% compared with bare PET. In case of three-layer oxidized SiOxCy(-H) film, the oxygen gas permeability decreased by 73%. The oxygen permeability was affected by the thickness of the SiO2-like layer formed by oxidation treatment rather than the thickness of the SiOxCy(-H) film. The excellent corrosion resistance was demonstrated by coating an oxidized SiOxCy(-H) thin film on the silver-coated aluminum PCB for light emitting diode (LED).

Low-Voltage Organic Thin-Film-Transistors on $Al_2O_3$ Gate Insulators Layer Fabricated by ALD Processing Method (ALD 방식의 $Al_2O_3$ 게이트 절연막을 이용한 저 전압 유기 트랜지스터에 관한 연구)

  • Hyung, Gun-Woo;So, Byung-Soo;Lee, Jun-Young;Park, Il-Houng;Choe, Hak-Beom;Hwang, Jin-Ha;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.230-231
    • /
    • 2007
  • we fabricated a pentacene thin-film transistor with an $Al_2O_3$ layer of ALD as a gate insulator and obtained a device with better electrical characteristics at low operating voltages (below 16V). This device was found to have a field-effect mobility of $0.03cm^2/Vs$, a threshold voltage of -6V, an subthreshold slope of 1 V/decade, and an on/off current ratio of $10^6$.

  • PDF

Effects of Polyimide Passivation Layers and polyvinylalcohol Passivation Layers for Organic Thin-Film Transistors(OTFTs) (폴리이미드 패시베이션과 폴리비닐알콜 패시베이션 레이어 성막이 고성능 유기박막 트렌지스터에 주는 영향)

  • Park, Il-Houng;Hyung, Gun-Woo;Choi, Hak-Bum;Hwang, Sun-Wook;Kim, Young-Kwan
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.195-198
    • /
    • 2008
  • In this paper, it was demonstrated that organic thin-film transistors (OTFTs) were fabricated with the organic passivation layer by vapor deposition polymerization (VDP) processing. In order to form polymeric film as a passivation layer, VDP process was also introduced instead of spin-coating process, where polymeric film was co-deposited by high-vacuum thermal evaporation from 6FDA and ODA followed by curing. In order to investigate by compared with different passivation layer, the other OTFTs is fabricated to passivation by Polyvinylalcohol using spincoating. We can see that two different ways of passivation layer affect electric characteristic of OTFTs. The initial electric characteristic of OTFTs before passivation such as field effect mobility, threshold voltage, and on-off current ratio are $0.24cm^2/Vs$, -3V, and $10^6$, respectively. Then after polyimide passivation layer, field effect mobility change from $0.24cm^2/Vs$ to $0.26cm^2/Vs$, threshold voltage from -3V to 1V and on-off current ratio from $10^6$ to $10^6$, respectively. In the case of polyvinylalcohol passivation, the initial electric characteristic of OTFTs before passivation such as field effect mobility, threshold voltage, and on-off current ratio are $0.13cm^2/Vs$, 0V, and $10^6$, respectively. Then after polyvinylalcohol passivation layer, field effect mobility changes from $0.13cm^2/Vs$ to $0.13cm^2/Vs$, threshold voltage from 0V to 2V, and on-off current ratio from $10^6$ to $10^5$, respectively.

Heat resistant characterization of PMDA /4,4′-DBE polyimide of fabricated by vapor deposition polymerization (진공증착중합법에 의해 제조된 PMDA /4,4′-DDE 폴리이미드의 내열 특성)

  • 김형권;이은학;우호환;김종석;이덕출
    • Fire Science and Engineering
    • /
    • v.10 no.3
    • /
    • pp.3-9
    • /
    • 1996
  • The Polyimide thin films based on PMDA and 4,$4^{\circ}$'-DDE were fabricated by VDPM, and their heat resistance characteristics were invastigated by TGA(Thermogravimetry Analyzer). It was found that deposition rate decreased with increasing substrate temperature and the thin films were not fabricated over the substrate temperature of $70^{\circ}$. $T_{TG}$ of weight loss temperature is $565^{\circ}$, $397^{\circ}$ and $210^{\circ}$ at the substrate temperature of $20^{\circ}$, $40^{\circ}$ and $70^{\circ}$, respectively. It is realized that the endurace temperature for 20,000 hour of thin films fabricated at $20^{\circ}$ and $40^{\circ}$ is $230^{\circ}$ and $200^{\circ}$, respectively.

  • PDF

Control of Plasma Characteristic to Suppress Production of HSRS in SiH4/H2 Discharge for Growth of a-Si: H Using Global and PIC-MCC Simulation

  • Won, Im-Hui;Gwon, Hyeong-Cheol;Hong, Yong-Jun;Lee, Jae-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.312-312
    • /
    • 2011
  • In SiH4/H2 discharge for growth process of hydrogenated amorphous silicon (a-Si:H), silane polymers, produced by SiH2 + Sin-1H2n ${\rightarrow}$ SinH2n+2, have no reactivity on the film-growing surface. However, under the SiH2 rich condition, high silane reactive species (HSRS) can be produced by electron collision to silane polymers. HSRS, having relatively strong reactivity on the surface, can react with dangling bond and form Si-H2 networks which have a close correlation with photo-induced degradation of a-Si:H thin film solar cell [1]. To find contributions of suggested several external plasma conditions (pressure, frequency and ratio of mixture gas) [2,3] to suppressing productions of HSRS, some plasma characteristics are studied by numerical methods. For this study, a zero-dimensional global model for SiH4/H2 discharge and a one-dimensional particle-in-cell Monte-Carlo-collision model (PIC-MCC) for pure SiH4 discharge have been developed. Densities of important reactive species of SiH4/H2 discharge are observed by means of the global model, dealing 30 species and 136 reactions, and electron energy probability functions (EEPFs) of pure SiH4 discharge are obtained from the PIC-MCC model, containing 5 charged species and 15 reactions. Using global model, SiH2/SiH3 values were calculated when pressure and driving frequency vary from 0.1 Torr to 10 Torr, from 13.56 MHz to 60 MHz respectively and when the portion of hydrogen changes. Due to the limitation of global model, frequency effects can be explained by PIC-MCC model. Through PIC-MCC model for pure SiH4, EEPFs are obtained in the specific range responsible for forming SiH2 and SiH3: from 8.75 eV to 9.47 eV [4]. Through densities of reactive species and EEPFs, polymerization reactions and production of HSRS are discussed.

  • PDF