• Title/Summary/Keyword: Vapor Oil

Search Result 109, Processing Time 0.025 seconds

Reaction Kinetic Study on Pyrolysis of Waste Polystyrene using Wetted Column Reactor (Wetted Column 반응기를 이용한 폴리스티렌 열분해 반응속도론적 연구)

  • You, Young Gil;Yoon, Byung Tae;Kim, Seong Bo;Choi, Myoung Jae;Choi, Cheong Song
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.535-539
    • /
    • 2008
  • Conversion to oil, yield of styrene and formation of side products such as ${\alpha}-methyl$ styrene, ethyl benzene, benzene, toluene, dimer and trimer were affected by residue formed during thermal degradation. Also, control of reaction temperature had a difficulty at the first stage. Thus, new reaction system using wetted-wall type reactor was proposed and examined on various parameters such as reaction temperature, feeding rate and removal velocity of formed vapor. Optimun condition was obtained from continuous thermal degradation using wetted-wall type reactor and reaction kinetic study was carried out at new type reactor.

Study on R-l34a, R-407C, and R-410A Condensation Performance in the Oblong Shell and Plate Heat Exchanger (오블롱 셀 플레이트 열교환기에서의 R-l34a, R-407C, R-410A의 응축성능에 관한 실험적 연구)

  • Park, Jae-Hong;Kim, Young-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1535-1548
    • /
    • 2004
  • Condensation heat transfer experiments were conducted with the oblong shell and plate heat exchanger without oil in a refrigerant loop using R-l34a, R-407C and R-410A. An experimental refrigerant loop has been developed to measure the condensation heat transfer coefficient h$_{r}$ and frictional pressure drop $\Delta$p$_{f}$ of the various refrigerants in a vertical oblong shell and plate heat exchanger. The effects of the refrigerant mass flux(40∼80kg/$m^2$s), average heat flux(4∼8kW/$m^2$), refrigerant saturation temperature(30∼4$0^{\circ}C$) and vapor quality of refrigerants on the measured data were explored in detail. Similar to the case of a plate heat exchanger, even at a very low Reynolds number, the flow in the oblong shell and plate heat exchanger remains turbulent. A comparison of the performance of the various refrigerants revealed that R-410A had the highest heat transfer performance followed by R-l34a, and R-407C had the lowest performance of the refrigerants tested. The pressure drops were also reported in this paper. The pressure drops for R-410A were approximately 45% lower than those of R-l34a. R-407C had 30% lower pressure drops than R-l34a. Experimental results were compared with several correlations which predicted condensation heat transfer coefficients and frictional pressure drops. Comparison with the experimental data showed that the previously proposed correlations gave unsatisfactory results. Based on the present data, empirical correlations of the condensation heat transfer coefficient and the friction factor were proposed.tor were proposed.sed.

Evaporation Heat Transfer and Pressure Drop of $CO_2$ in a Small diameter Tube (세관내 이산화탄소의 증발 열전달 및 압력강화)

  • Jang, Seong-Il;Choi, Sun-Muk;Kim, Dae-Hui;Park, Ki-Won;Oh, Hoo-Kyu
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.189-194
    • /
    • 2005
  • The evaporation heat transfer and pressure drop of $CO_2$ in a small diameter tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator(test section). The test section was made of a horizontal stainless steel tube with the inner diameter of 4.57 mm, and length of 4 m. The experiments were conducted at mass flux of 200 to 700 $kg/m^2s$, saturation temperature of $0^{\circ}C$ to $20^{\circ}C$, and heat flux of 10 to 20 $kW/m^2$ . The test results showed the evaporation heat transfer of $CO_2$ has great effect on more nucleate boiling than convective boiling. The evaporation heat transfer coefficients of $CO_2$ are highly dependent on the vapor quality, heat flux and saturation temperature. The evaporation pressure drop of C02 are highly dependent on the mass flux. In comparison with test results and existing correlations, correlations failed to predict the evaporation heat transfer coefficient and pressure drop of $CO_2$, therefore, it is necessary to develop reliable and accurate predictions determining the evaporation heat transfer coefficient and friction pressure drop of $CO_2$ in a horizontal tube.

  • PDF

Sustained Release of Anthocyanin from Porous Poly(lactic-co-glycolide) Microsparticles Developed for the Treatment of Chronic Obstructive Pulmonary Disease

  • Yoo, Na-Young;Baik, Hye-Jung;Lee, Bo-Reum;Youn, Yu-Seok;Oh, Kyung-Taek;Lee, Eun-Seong
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.4
    • /
    • pp.231-236
    • /
    • 2010
  • This study was to fabricate the porous poly(lactide-co-glycolide) (PLGA) microparticles with anthocyanin (as a model antioxidant) for pulmonary drug delivery. The highly porous PLGA microparticles were prepared by the waterin-oil-in-water ($W_1/O/W_2$) multi-emulsion method, followed by the decomposition of ammonium bicarbonate (AB) in $W_1$ phase to the base of ammonia, carbon dioxide and water vapor at $50^{\circ}C$, making a porous structure in PLGA microparticles. Herein, hyaluronate (HA), a viscous polysaccharide, was incorporated in the porous microparticles for sustained anthocyanin release. In in vitro release studies, the anthocyanin release from the porous microparticles with HA continued up to 24 hours, while the porous microparticles without HA released 80 wt.% of encapsulated anthocyanin within 2 hours. In addition, these microparticle are expected to be effectively deposited at a lung epithelium due to its high porosity (low density) and avoid alveolar macrophage's uptake in the lung due to its large particle size. We believe that this system has a great pharmaceutical potential as a long acting antioxidant for relieving the oxidative stress in chronic obstructive pulmonary disease (COPD).

Evaporation Pressure Drop of Carbon Dioxide in Horizontal Tubes with Inner Diameter of 4.57 mm and 7.75 mm (내경 4.57과 7.75 mm인 수평관내 이산화탄소의 증발 압력강하)

  • Son, Chang-Hyo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.30-37
    • /
    • 2008
  • The evaporation pressure drop of $CO_2$ (R-744) in horizontal tubes was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator (test section). The test section consists of a smooth, horizontal stainless steel tube of 7.75 and 4.57 mm inner diameter. The experiments were conducted at saturation temperature of $-5^{\circ}C\;to\;5^{\circ}C$, and heat flux of 10 to $40kW/m^2$. The test results showed the evaporation pressure drop of $CO_2$ are highly dependent on the vapor quality, heat flux and saturation temperature. The pressure drop measured during the evaporation process of $CO_2$ increases with increased mass flux, and decreases as the saturation temperature increased. The evaporation pressure drop of $CO_2$ is very lower than that of R-22. In comparison with test results and existing correlations, the best fit of the present experimental data is obtained with the correlation of Choi et al. But existing correlations failed to predict the evaporation pressure drop of $CO_2$. Therefore, it is necessary to develop reliable and accurate predictions determining the evaporation pressure drop of $CO_2$ in a horizontal tube.

Evaporation Heat Transfer of Carbon Dioxide in a horizontal Round Tube (수평원관내 $CO_2$의 증발열전달)

  • Kyoung, Nam-Soo;Jang, Seung-Il;Choi, Sun-Muk;Son, Chang-Hyo;Oh, Hoo-Kyu
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.262-267
    • /
    • 2005
  • The evaporation heat transfer coefficient of $CO_2$ in a horizontal round tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator(test section). The test section was made of a horizontal stainless steel tube with the inner diameter of 7.75 mm, and length of 5 m. The experiments were conducted at mass flux of 200 to 500 $kg/m^2s$, saturation temperature of $-5^{\circ}C$ to $5^{\circ}C$, and heat flux of 10 to 40 $kW/m^2$. The test results showed the evaporation heat transfer of $CO_2$ has great effect on more nucleate boiling than convective boiling. The evaporation heat transfer coefficients of $CO_2$ are highly dependent on the vapor quality, heat flux and saturation temperature. In comparison with teat results and existing correlations, correlations failed to predict the evaporation heat transfer coefficient of $CO_2$, therefore, it is necessary to develop reliable and accurate predictions determining the evaporation heat transfer coefficient of $CO_2$ in a horizontal tube.

  • PDF

Development of Source Profiles and Estimation of Source Contribution for VOCs by the Chemical Mass Balance Model in the Yeosu Petrochemical Industrial Complex (여수석유화학산단 내 VOCs에 대한 오염원 분류표의 개발 및 CMB 모델에 의한 기여도 산정)

  • Jeon Jun-Min;Hur Dong;Kim Dong-Sul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.1
    • /
    • pp.83-96
    • /
    • 2005
  • The purposes of this study were to characterize the local levels of VOCs (volatile organic compounds), to develop source profiles of VOCs, and to quantify the source contribution of VOCs using the CMB (chemical mass balance) model. The concentration of VOCs had been measured every 6-day duration in the SRO monitoring site in the Yeosu Petrochemical Industrial Complex from September 2000 to August 2002. The total of 35 target VOCs, which were included in the TO-14 designated from the U.S. EPA, was selected to be monitored in the study area. During a 24-h period, the ambient VOCs were sampled by using canisters placing about 10 ~ 15 m above the ground level. The collected canisters were then analyzed by a GC-MS in the laboratory. Aside from ambient sampling at the SRO site, the VOCs had been intensively and massively measured from 8 direct sources and 4 general sources in the study area. The results obtained in the study were as follows; first, the annual mean concentrations of the target VOCs were widely distributed regardless of monitoring sites in the Yeosu Petrochemical Industrial Complex. In particular, the concentrations of BTX (Benzene, Toluene, Xylene), vinyl chloride were higher than other target compounds. Second, based on these source sample data, source profiles for VOCs were developed to apply a receptor model, the CMB model. Third, the results of source apportionment study for the VOCs in the SRO Site were as follows; The source of petrochemical plant was apportioned by 31.3% in terms of VOCs mass. The site was also affected by 16.7% from wastewater treatment plant, 14.0% from iron mills, 8.4% from refineries, 4.4% from oil storage, 3.8% from automobiles, 2.3% from fertilizer, 2.3% from painting, 2.2% from waste incinerator, 0.6% from graphic art, and 0.4% from gasoline vapor sources.

The Continuous Pyrolysis of Waste Polystyrene using Wetted-Wall Type Reactor (Wetted-Wall Column 형 반응기를 이용한 폐 EPS 연속 열분해반응)

  • Han, Myung Sook;Han, Myung Wan;Yoon, Byung Tae;Kim, Seong Bo;Choi, Myoung Jae
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.396-399
    • /
    • 2007
  • Organic residue and carbonized solid producing from the thermal degradation gave a influence on oil conversion, formation of styrene and side products such as ${\alpha}-methyl$ styrene, ethyl benzene, dimer. Thus, new reaction system using wetted-wall type reactor was proposed and examined on influence of various parameters such as reaction temperature, feeding rate and removal velocity of formed vapor. Optimum condition were obtained from continuous thermal degradation using wetted-wall type reactor and styrene was continuously obtained as the yield up 65%.

Evaporation Heat Transfer Characteristics of $CO_2$ in a Horizontal Tube

  • Lee Dong-Geon;Son Chang-Hyo;Oh Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.297-305
    • /
    • 2005
  • The evaporation heat transfer coefficient of $CO_2$ (R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver. a variable-speed pump. a mass flow meter. a pre-heater and evaporator (test section). The test section consists of a smooth. horizontal stainless steel tube of 7.75 mm inner diameter. The experiments were conducted at mass flux of 200 to $500\;kg/m^{2}s$. saturation temperature of $-5^{\circ}C\;to\;5^{\circ}C$. and heat flux of 10 to $40\;kW/m^2$. The test results showed the evaporation heat transfer of $CO_2$ has greatly effect on more nucleate boiling than convective boiling. The evaporation heat transfer coefficients of $CO_2$ are highly dependent on the vapor quality. heat flux and saturation temperature. The evaporation heat transfer coefficient of $CO_2$ is very larger than that of R-22 and R-134a. In making a comparison between test results and existing correlations. the present experimental data are the best fit for the correlation of Jung et al. But it was failed to predict the evaporation heat transfer coefficient of $CO_2$ using by the existing correlation. Therefore. it is necessary to develop reliable and accurate predictions determining the evaporation heat transfer coefficient of $CO_2$ in a horizontal tube.

Evaporation Heat Transfer Characteristics of $CO_2$ in a Horizontal Tube

  • Son Chang-Hyo;Kim Dae-Hui;Choi Sun-Muk;Kim Young-Ryul;Oh Hoo-Kyu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.4
    • /
    • pp.167-174
    • /
    • 2005
  • The evaporation heat transfer coefficient of $CO_2$ (R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator (test section). The test section consists of a smooth horizontal stainless steel tube of 7.75 mm inner diameter. The experiments were conducted at mass flux of 200 to $500kg/m^2s$, saturation temperature of $-5^{\circ}C\;to\;5^{\circ}C$, and heat flux of 10 to $40kW/m^2$. The test results showed the evaporation heat transfer of $CO_2$ has greater effect on nucleate boiling than convective boiling. The evaporation heat transfer coefficient of $CO_2$ is highly dependent on the vapor quality, heat flux and saturation temperature. The evaporation heat transfer coefficient of $CO_2$ is very larger than that of R-22 and R-134a. In comparison with test results and existing correlations, the best fit of the present experimental data is obtained with the correlation of Jung et al. But the existing correlations failed to predict the evaporation heat transfer coefficient of $CO_2$. Therefore, it is necessary to develop reliable and accurate predictions determining the evaporation heat transfer coefficient of $CO_2$ in a horizontal tube.