• 제목/요약/키워드: Vanilloid receptor

검색결과 68건 처리시간 0.027초

Pharmacology of novel vanilloid receptor antagonists

  • Park, Jin-Kyu;Yi, Jung-Bum;Koh, Hyun-Ju;Jeong, Yeon-Su;Lim, Kyung-Min;Moh, Joo-Hyun;Suh, Young-Ger;Oh, Uh-Taek;Kim, Hee-Doo;Park, Hyeung-Geun;Park, Young-Ho
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.251.1-251.1
    • /
    • 2002
  • Capsaicin and analogues are valuable analgesic agents when administered to mammals. including humans. However. their pungency. hypothermia and the effects on the cardiovascular and respiratory systems through their general activation of primary afferents severely limit their use. So competitive antagonists have been pursued as a novel pharmacological agent for analgesics. rather than agonists. We have identified a new class of potent and selective vanilloid receptor (VR) antagonists. (omitted)

  • PDF

Expression of vesicular glutamate transporter in transient receptor potential vanilloid 1-positive neurons in the rat trigeminal ganglion

  • Han, Hye Min;Cho, Yi Sul;Bae, Yong Chul
    • International Journal of Oral Biology
    • /
    • 제46권3호
    • /
    • pp.119-126
    • /
    • 2021
  • Activation of transient receptor potential vanilloid 1 (TRPV1), a calcium permeable channel expressed in primary sensory neurons, induces the release of glutamate from their central and peripheral afferents during normal acute and pathological pain. However, little information is available regarding the glutamate release mechanism associated with TRPV1 activation in primary sensory neurons. To address this issue, we investigated the expression of vesicular glutamate transporter (VGLUT) in TRPV1-immunopositive (+) neurons in the rat trigeminal ganglion (TG) under normal and complete Freund's adjuvant (CFA)-induced inflammatory pain conditions using behavioral testing as well as double immunofluorescence staining with antisera against TRPV1 and VGLUT1 or VGLUT2. TRPV1 was primarily expressed in small and medium-sized TG neurons. TRPV1+ neurons constituted approximately 27% of all TG neurons. Among all TRPV1+ neurons, the proportion of TRPV1+ neurons coexpressing VGLUT1 (VGLUT1+/TRPV1+ neurons) and VGLUT2 (VGLUT2+/TRPV1+ neurons) was 0.4% ± 0.2% and 22.4% ± 2.8%, respectively. The proportion of TRPV1+ and VGLUT2+ neurons was higher in the CFA group than in the control group (TRPV1+ neurons: 31.5% ± 2.5% vs. 26.5% ± 1.2%, VGLUT2+ neurons: 31.8% ± 1.1% vs. 24.6% ± 1.5%, p < 0.05), whereas the proportion of VGLUT1+, VGLUT1+/TRPV1+, and VGLUT2+/TRPV1+ neurons did not differ significantly between the CFA and control groups. These findings together suggest that VGLUT2, a major isoform of VGLUTs, is involved in TRPV1 activation-associated glutamate release during normal acute and inflammatory pain.

Rat 바닐로이드 수용체 TRPV1과 Rab11-FIP3의 특이적 결합 (Specific Interaction of Rat Vanilloid Receptor, TRPV1 with Rab11-FIP3)

  • 이순열;김미란
    • 한국산학기술학회논문지
    • /
    • 제12권1호
    • /
    • pp.312-317
    • /
    • 2011
  • 캡사이신 채널로 알려진 바닐로이드 수용체 TRPV1 (캡사이신채널, Transient Receptor Potential Vanilloid 1)은 통증발현에서 중요한 역할을 하는 것으로 알려져 있다. 하지만 TRPV1의 활성조절에 관여하는 단백질에 대하여는 알려진 바가 많지 않다. 최근 rat TRPV1과 직접적으로 결합하는 단백질을 탐색하여 mouse Rab11-FIP3 (rab11-family interaction protein 3)가 rat TRPV1과 직접적으로 결합한다는 것이 보고되었다. Rab11은 여러 가지의 세포내 이동에 관여하는 것으로 보고되었다. 그러므로 Rab11-FIP3과의 결합을 통해 TRPV1의 세포막으로의 이동에 관여할 것으로 추측할 수 있다. 본 연구에서는 전에 보고된 연구가 mouse와 rat 이라는 다른 종의 단백질끼리의 결합이기 때문에 같은 종에서의 상호작용을 확인하고 Rab11-FIP3의 TRPV1의 세포막으로의 이동에서의 역할을 알아보고자 현재까지 동정되지 않은 rat의 Rab11-FIP3의 유전자를 GenBank 서열을 바탕으로 rat 뇌의 RNA 로부터 cDNA 를 클로닝하여 유전자를 분리하고 TRPV1 과의 관계를 세포생물학적으로 알아보았다. 연구결과 rat의 Rab11-FIP3는 489개의 아미노산 서열을 가지고 있으며 human과는 80%, mouse와는 90% 이상 아미노산 서열의 상동성을 보였다. 조직별 분포는 심장, 뇌, 간, 콩팥, 정소에서 발현되고 있는 것을 northern blot assay와 western blot assay 로 확인하였다. rat 의 뇌조직에서 TRPV1 과 Rab11-FIP3 단백질이 결합하여 colocalize 하는 것을 면역화학방법으로 확인하였다. 이 결합은 같은 family 의 TRPV2 와는 결합하지 않는 특이적 결합이므로 Rab11-FIP3 가 TRPV1 과 상호작용하여 세포막으로의 이동에 관여할 것이라는 것을 시사한다.

Structural Study of the Cytosolic C-terminus of Vanilloid Receptor 1

  • Seo, Min-Duk;Won, Hyung-Sik;Oh, Uh-Taek;Lee, Bong-Jin
    • 한국자기공명학회논문지
    • /
    • 제11권2호
    • /
    • pp.85-94
    • /
    • 2007
  • Vanilloid receptor I [transient receptor potential vanilloid subfamily member 1 (TRPV1), also known as VR1] is a non-selective cationic channel activated by noxious heat, vanilloids, and acid, thereby causing pain. VR1 possesses six transmembrane domain and N-and C-terminus cytosolic domains, and appears to be a homotetramer. We studied the structural properties of Cterminus of VR1 (VR1C) using CD and NMR spectroscopy. DPC micelles, with a zwitterionic surface, and SDS micelles, with a negatively charged surface, were used as a membrane mimetic model system. Both SDS and DPC micelles could increase the stability of helical structures and/or reduce the aggregation form of the VR1C. However, the structural changing mode of the VR1C induced by the SDS and DPC micelles was different. The changes according to the various pHs were also different in two micelles conditions. Because the net charges of the SDS and DPC micelles are negative and neutral, respectively, we anticipate that this difference might affect the structure of the VR1C by electrostatic interaction between the surface of the VR1C and phospholipids of the detergent micelles. Based on these similarity and dissimilarity of changing aspects of the VR1C, it is supposed that the VR1C probably has the real pI value near the pH 7. Generally, mild extracellular acidic pH ($6.5{\sim}6.8$) potentiates VRI channel activation by noxious heat and vanilloids, whereas acidic conditions directly activate the channel. The channel activation of the VRI might be related to the structural change of VR1C caused by pH (electrostatic interactions), especially near the pH 7. By measuring the $^1-^{15}N$ TROSY spectra of the VR1C, we could get more resolved and dispersed spectra at the low pH and/or detergent micelles conditions. We will try to do further NMR experiments in low pH with micelles conditions in order to get more information about the structure of VR1C.

  • PDF

바닐로이드 수용체 TRPV1의 막수송과정에서의 Rab11의 역할 (Role of Rab11 on Membrane Trafficking of Rat Vanilloid Receptor, TRPV1)

  • 엄기범;이순열
    • 한국산학기술학회논문지
    • /
    • 제12권7호
    • /
    • pp.3096-3102
    • /
    • 2011
  • 바닐로이드 수용체 TRPV1(transient receptor potential vanilloid 1)은 캡사이신, pH, 열 등의 통증 유발물질에 의해 활성화되는 비특이적 양이온 채널로서 통증발현에 핵심적인 막 단백질이다. TRPV1의 막 수송에 관한 연구가 미미한 가운데 FIP3(family of Rab11 interacting protein 3)가 TRPV1 채널과 결합하여 막수송에 관여한다고 보고되었다. FIP3는 Rab11과 결합하는 단백질인데 최근 Rab11 단백질이 여러 채널 단백질의 막수송에 직접적으로 또는 간접적으로 중요하다고 보고되었다. 그러므로 본 연구에서는 Rab11이 TRPV1의 막 수송에서의 역할을 알아보기 위하여 세포 생물학적, 생화학적으로 알아보았다. 공촛점 현미경을 통하여 확인한 결과 Rab11은 실제로 세포내에서 TRPV1과 동일한 위치에서 발현되어 있음을 확인하였다. 하지만 생화학적인 방법인 GST-pulldown을 실시하였을 때 TRPV1과 Rab11간에는 서로 직접적인 결합은 하지 않는 것으로 나타났다. 비록 직접적인 결합은 하지 않지만 Rab11이 TRPV1의 막 수송에 관여한다고 가정하고 Rab11의 TRPV1의 막수송에서의 역할을 더 자세히 알아보기 위하여 세포내 Rab11a의 발현을 siRNA를 사용하여 Rab11a의 발현을 50%수준으로 저해한 후 TRPV1의 세포막으로의 이동을 알아본 결과 Rab11 발현 저해 시 세포막에 이동된 TRPV1이 현저히 감소함을 확인할 수 있었다. 이 결과로부터 Rab11이 아마도 FIP3을 포함하는 방법으로 TRPV1의 막 수송에 영향을 주는 것으로 결론지을 수 있다.

Vanilloid Receptor 1 Agonists, Capsaicin and Resiniferatoxin, Enhance MHC Class I-restricted Viral Antigen Presentation in Virus-infected Dendritic Cells

  • Young-Hee Lee;Sun-A Im;Ji-Wan Kim;Chong-Kil Lee
    • IMMUNE NETWORK
    • /
    • 제16권4호
    • /
    • pp.233-241
    • /
    • 2016
  • DCs, like the sensory neurons, express vanilloid receptor 1 (VR1). Here we demonstrate that the VR1 agonists, capsaicin (CP) and resiniferatoxin (RTX), enhance antiviral CTL responses by increasing MHC class I-restricted viral antigen presentation in dendritic cells (DCs). Bone marrow-derived DCs (BM-DCs) were infected with a recombinant vaccinia virus (VV) expressing OVA (VV-OVA), and then treated with CP or RTX. Both CP and RTX increased MHC class I-restricted presentation of virus-encoded endogenous OVA in BM-DCs. Oral administration of CP or RTX significantly increased MHC class I-restricted OVA presentation by splenic and lymph node DCs in VV-OVA-infected mice, as assessed by directly measuring OVA peptide SIINFEKL-Kb complexes on the cell surface and by performing functional assays using OVA-specific CD8 T cells. Accordingly, oral administration of CP or RTX elicited potent OVA-specific CTL activity in VV-OVA-infected mice. The results from this study demonstrate that VR1 agonists enhance anti-viral CTL responses, as well as a neuro-immune connection in anti-viral immune responses.

Analgesic and anti-inflammatory effects of galangin: a potential pathway to inhibit transient receptor potential vanilloid 1 receptor activation

  • Kaiwen Lin;Datian Fu;Zhongtao Wang;Xueer Zhang;Canyang Zhu
    • The Korean Journal of Pain
    • /
    • 제37권2호
    • /
    • pp.151-163
    • /
    • 2024
  • Background: Galangin, commonly employed in traditional Chinese medicine for its diverse medicinal properties, exhibits potential in treating inflammatory pain. Nevertheless, its mechanism of action remains unclear. Methods: Mice were randomly divided into 4 groups for 7 days: a normal control group, a galangin-treated (25 and 50 mg/kg), and a positive control celecoxib (20 mg/kg). Analgesic and anti-inflammatory effects were evaluated using a hot plate test, acetic acid-induced writhing test, acetic acid-induced vascular permeability test, formalin-induced paw licking test, and carrageenan-induced paw swelling test. The interplay between galangin, transient receptor potential vanilloid 1 (TRPV1), NF-κB, COX-2, and TNF-α proteins was evaluated via molecular docking. COX-2, PGE2, IL-1β, IL-6, and TNF-α levels in serum were measured using ELISA after capsaicin administration (200 nmol/L). TRPV1 expression in the dorsal root ganglion was analyzed by Western blot. The quantities of substance P (SP) and calcitonin gene-related peptide (CGRP) were assessed using qPCR. Results: Galangin reduced hot plate-induced licking latency, acetic acid-induced contortions, carrageenan-triggered foot inflammation, and capillary permeability in mice. It exhibited favorable affinity towards TRPV1, NF-κB, COX-2, and TNF-α, resulting in decreased levels of COX-2, PGE2, IL-1β, IL-6, and TNF-α in serum following capsaicin stimulation. Galangin effectively suppressed the upregulation of TRPV1 protein and associated receptor neuropeptides CGRP and SP mRNA, while concurrently inhibiting the expression of NF-κB, TNF-α, COX-2, and PGE2 mRNA. Conclusions: Galangin exerts its anti-inflammatory pain effects by inhibiting TRPV1 activation and regulating COX-2, NF-κB/TNF-α expression, providing evidence for the use of galangin in the management of inflammatory pain.

Excitatory effect of KR-25018 and capsaicin on the isolated guinea pig bronchi

  • 정이숙;신화섭;박노상;문창현;조태순
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1996년도 춘계학술대회
    • /
    • pp.252-252
    • /
    • 1996
  • We Investigated the peripheral excitatory effect of capsaicin and KR-25018, a newly synthesized capsaicin derivative which was demonstrated to have a potent analgesic activity. KR-25018 and capsaicin were found to be both potent efficacious contractors of isolated guinea pig bronchial smooth muscle. KR-25018 was equipotent with capsaicin and [Sar$\^$9/,Met(O$_2$)$\^$11/]-substance P, 10-fold more potent than histamine and 10-fold less potent than (${\beta}$ -Ala$\^$8/)-neurokinin A(4-10), and their -log(M)EC$\_$50/ values were 6.94${\pm}$0.08, 6.86${\pm}$0.05, 6.96${\pm}$0.07, 5.64${\pm}$0.04, 7.96${\pm}$0.02, respectively. Contractile responses to KR-25018 and capsaicin were potentiated by phosphoramidon (1 ${\mu}$M), an inhibitor of neuropeptide-inactivating endopeptidase, but completely abolished in a calcium-free medium. These responses to KR-25018 and capsaicin were unaffected by the NK-1 antagonist CP96345 (1${\mu}$M), partially inhibited by the NK-2 antagonist SR48968 (1 ${\mu}$M) but almost completely abolished by a combination of the antagonists. A vanilloid receptor antagonist capsazepine competitively antagonized the responses to both KR-25018 and capsaicin (pA$_2$: aganst KR-25018, 5.98${\pm}$0.47; against capsaicin, 5.80${\pm}$0.31), and a capsaicin-sensitive cation channel antagonist ruthenium red caused significant reduction in the maximum responses to KR-25018 and capsaicin (pD'$_2$: against KR-25018, 4.61${\pm}$0.33; against capsaicin 4.96${\pm}$0.21). In conclusion, the present results suggest that KR-25018 and cpasaicin act on the same vanilloid receptor inducing the influx of calcium through ruthenium red-sensitive cation channel and produce contractile responses via the release of tachykinins that act on both NK-1 and NK-2 receptor subtypes.

  • PDF

Ononis spinosa alleviated capsaicin-induced mechanical allodynia in a rat model through transient receptor potential vanilloid 1 modulation

  • Jaffal, Sahar Majdi;Al-Najjar, Belal Omar;Abbas, Manal Ahmad
    • The Korean Journal of Pain
    • /
    • 제34권3호
    • /
    • pp.262-270
    • /
    • 2021
  • Background: Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel implicated in pain sensation in response to heat, protons, and capsaicin (CAPS). It is well established that TRPV1 is involved in mechanical allodynia. This study investigates the effect of Ononis spinosa (Fabaceae) in CAPS-induced mechanical allodynia and its mechanism of action. Methods: Mechanical allodynia was induced by the intraplantar (ipl) injection of 40 ㎍ CAPS into the left hind paw of male Wistar rats. Animals received an ipl injection of 100 ㎍ O. spinosa methanolic leaf extract or 2.5% diclofenac sodium 20 minutes before CAPS injection. Paw withdrawal threshold (PWT) was measured using von Frey filament 30, 90, and 150 minutes after CAPS injection. A molecular docking tool, AutoDock 4.2, was used to study the binding energies and intermolecular interactions between O. spinosa constituents and TRPV1 receptor. Results: The ipsilateral ipl injection of O. spinosa before CAPS injection increased PWT in rats at all time points. O. spinosa decreased mechanical allodynia by 5.35-fold compared to a 3.59-fold decrease produced by diclofenac sodium. The ipsilateral pretreatment with TRPV1 antagonist (300 ㎍ 4-[3-Chloro-2-pyridinyl]-N-[4-[1,1-dimethylethyl] phenyl]-1-piperazinecarboxamide [BCTC]) as well as the β2-adrenoreceptor antagonist (150 ㎍ butoxamine) attenuated the action of O. spinosa. Depending on molecular docking results, the activity of the extract could be attributed to the bindings of campesterol, stigmasterol, and ononin compounds to TRPV1. Conclusions: O. spinosa alleviated CAPS-induced mechanical allodynia through 2 mechanisms: the direct modulation of TRPV1 and the involvement of β2 adrenoreceptor signaling.