Browse > Article
http://dx.doi.org/10.5762/KAIS.2011.12.7.3096

Role of Rab11 on Membrane Trafficking of Rat Vanilloid Receptor, TRPV1  

Um, Ki-Bum (Medical School, Sungkyunkwan University)
Lee, Soon-Youl (Dept. of Biotechnology, Genetic Engineering Research Institute, Hankyong National University)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.12, no.7, 2011 , pp. 3096-3102 More about this Journal
Abstract
Vanilloid receptor, TRPV1 (transient receptor potential vanilloid 1) is a non-selective cation channel that responds to a variety of pain-eliciting material including capsaicin, pH, heat. Although, membrane trafficking of TRPV1 was not much known so far, TRPV1 was reported to interact with FIP3 (family of Rab11 interacting protein 3). FIP3 was identified as one of Rab11 interacting proteins that is recently reported important in membrane trafficking of several channel proteins directly or indirectly. Therefore, in this study, we examined the role of Rab11 in the membrane trafficking of TRPV1 using cell biological and biochemical techniques. Rab11 was found really colocalized with TRPV1 based on the result of confocal microscopy. However, GST-pulldown assay, one of biochemical technique, found that Rab11 did not interact with TRPV1. Although Rab11 does not interact with TRPV1 directly, we hypothesized that Rab11 is indeed involved in the membrane trafficking of TRPV1. In order to examine further the role of Rab11 in the membrane trafficking of TRPV1, the expression of TRPV1 on the membrane was examined when the expression of Rab11 was decreased down to about 50% by siRNA technique and found decreased significantly. From this result, we can conclude that Rab11 is involved in the membrane trafficking of TRPV1 in a way of including FIP3.
Keywords
TRPV1; Capsaicin channel; Rab11; Membrane trafficking; Inhibition of expression; siRNA;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Tominaga M., Wada M., Masu M. Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. Proc. Natl. Acad. Sci. USA. 98, pp. 6951-6956, 2001.   DOI
2 Varga A., Bolcskei K., Szoke E., Almasi R., Czeh G., Szolcsanyi J., Petho G. Relative roles of protein kinase A and protein kinase C in modulation of transient receptor potential vanilloid type 1 receptor responsiveness in rat sensory neurons in vitro and peripheral nociceptors in vivo. Neuroscience. 140, pp. 645-657, 2006.   DOI
3 Caterina M. J., Schumacher M. A., Tominaga M., Rosen T. A., Levine J. D., Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway, Nature, 389, pp. 816-824, 1997.   DOI   ScienceOn
4 Hwang S. W., Cho H., Kwak J., Lee S. Y., Kang C. J., Jung J., Cho S., Min K. H., Suh Y. G., Kim D., Oh U. Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances, Proc. Natl. Acad. Sci. USA, 97, pp. 6155-6160, 2000.   DOI
5 Oh U., Hwang S. W., Kim D. Capsaicin activates a nonselective cation channel in cultured neonatal rat dorsal root ganglion neurons. J. Neurosci,. 16, pp. 1659-1667, 1996.   DOI
6 Caterina M. J., Schumacher M. A., Tominaga M., Rosen T. A., Levine J. D., Julius D. "The capsaicin receptor: a heat- activated ion channel in the pain pathway." Nature, 389, pp. 816-824, 1997.   DOI   ScienceOn
7 Montell C., Birnbaumer L., Flockerzi V., Bindels R. J., Bruford E. A., Caterina M. J., Clapham D. E., Harteneck C., Heller S., Julius D., Kojima I., Mori Y., Penner R., Prawitt D., Scharenberg A. M., Schultz G., Shimizu N., Zhu M. X. A unified nomenclature for the superfamily of TRP cation channels. Mol. Cell, 9, pp. 229-231, 2002.   DOI
8 Caterina M. J., Leffler A., Malmberg A.. B., Martin W. J., Trafton J., Petersen-Zeitz K. R., Koltzenburg M., Basbaum A. I., Julius D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science, 288, pp. 5464-5478, 2000.
9 Davis J. B., Gray J., Gunthorpe M. J., Hatcher J. P., Davey P. T., Overend P., Harries M. H., Latcham J., Clapham C., Atkinson K., Hughes S. A., Rance K., Grau E., Harper A. J., Pugh P. L., Rogers D. C., Bingham S., Randall A., Sheardown S. A.. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature, 405, pp. 6783-6794, 2000.
10 Zadeh A. D., Xu H., Loewen M. E., Noble G. P., Steele D. F., Fedida D. Internalized Kv1.5 traffics via Rab-dependent pathways. J. Physiol. 586, pp. 4793-4813. Epub 2008 Erratum in: J. Physiol. 587, p. 505, 2009.   DOI
11 Bilan F., Nacfer M., Fresquet F., Norez C., Melin P., Martin-Berge A., Costa de Beauregard M. A., Becq F., Kitzis A., Thoreau V. Endosomal SNARE proteins regulate CFTR activity and trafficking in epithelial cells. Exp. Cell Res. 314, pp. 2199-2211, Epub 2008.   DOI
12 Wilson G. M., Fielding A. B., Simon G.. C., Yu X., Andrews P. D., Hames R. S., et al. The FIP3-Rab11 protein complex regulates recycling endosome targeting to the cleavage furrow during late cytokinesis, Mol. Biol. Cell,, 16, pp. 849-860, 2005.
13 Fielding A. B., Schontech E., Matheson J., Wilson G., Yu X., Hickson G. R., et al. Rab11-FIP3 and FIP4 interact with Arf6 and the exocyst to control membrane traffic in cytokinesis. EMBO J., 24, pp. 3389-3399, 2005,   DOI
14 Sudharshan Eathirak, Ashwini Mishra, Prekeris, David G. Lambright. Structural Basis for Rab11-mediated Recruitment of FIP3 to Recycling Endosomes. J. Mol. Biol., 364, pp. 121-135, 2006.   DOI
15 Einarson M. E. Detection of protein-protein interactions using the GST fusion protein pull-down technique, Molecular Cloning : A Laboratory Manual (eds. Sambrook, J. & Russell, D. W.), pp. 10.55-18.59, 2001.
16 Horgan C. P., McCaffrey M. W. The dynamic Rab11-FIPs. Biochem. Soc. Trans., 37, pp. 1032-1036, 2009.   DOI
17 Ji R. R., Samad T. A., Jin S. X., Schmoll R., Woolf C. J.. p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron, 36, pp. 57-68, 2002.   DOI
18 Jung J., Shin J. S., Lee S. Y., Hwang S. W., Koo J., Cho H., Oh U. Phosphorylation of vanilloid receptor 1 by Ca2+/calmodulin-dependent kinase II regulates its vanilloid binding. J. Biol Chem.. 279, pp. 7048-7054, 2004.   DOI
19 Jin X., Morsy N., Winston J., Pasricha P. J., Garrett K., Akbarali H. I. Modulation of TRPV1 by nonreceptor tyrosine kinase, c-Src kinase. Am. J. Physiol. Cell Physiol. 287, pp. C558-C563, 2004.   DOI
20 Lee S. Y., Hong Y., Oh U. Decreased pain sensitivity of capsaicin-treated rats results from decreased VR1 expression. Arch Pharm Res., 27, pp. 1154-1160, 2004.   DOI
21 Morenilla-Palao C., Planells-Cases R., Garcia-Sanz N., Ferrer- Montiel A. Regulated exocytosis contributes to protein kinase C potentiation of vanilloid receptor activity. J. Biol. Chem., 279, pp. 25665-25672, 2004.   DOI
22 Lee S.Y. Identification of a protein that interacts with the vanilloid receptor, Biochem. Biophys. Res. Commun., 331, pp. 1445-1451, 2005.   DOI
23 Stan F. J., van de Graaf, Qing Chang, Arjen R. Mensenkamp, Joost G. J., Hoenderop, and Rene J. M., Bindels. Direct interaction with Rab11a targets the epithelial Ca2+ channel TRPV5 and TRPV6 to the plasma membrane. Mol. Cell. Biol., 26, pp. 303-312, 2006.   DOI
24 Vlachova V., Teisinger J., Susankova K., Lyfenko A., Ettrich R., Vyklicky L. Functional role of C-terminal cytoplasmic tail of rat vanilloid receptor 1. J. Neurosci. 23, pp. 1340-1350, 2003.
25 Cayouette S., Bousquet S. M., Francoeur N., Dupre E., Monet M., Gagnon H., Guedri Y. B., Lavoie C., Boulay G. Involvement of Rab9 and Rab11 in the intracellular trafficking of TRPC6. Biochim. Biophys. Acta. 1803, pp. 805-812, Epub 2010.   DOI
26 Karpushev A. V., Levchenko V., Pavlov T. S., Lam V. Y., Vinnakota K. C., Vandewalle A., Wakatsuki .T, Staruschenko A. Regulation of ENaC expression at the cell surface by Rab11. Biochem. Biophys. Res. Commun. 377, pp. 521-525, Epub 2008.   DOI
27 Palazzo E., Luongo L., de Novellis V., Berrino L., Rossi F., Maione S. Moving towards supraspinal TRPV1 receptors for chronic pain relief. Mol Pain. 6, 66, 2010.   DOI
28 Rathee P. K., Distler C., Obreja O., Neuhuber W., Wang G. K., Wang S. Y., Nau C., Kress M. PKA/AKAP/VR-1 module: A common link of Gs-mediated signaling to thermal hyperalgesia. J. Neurosci. 22, pp. 4740-4745, 2002.
29 De Petrocellis .L, Harrison S., Bisogno T., Tognetto M., Brandi I., Smith G. D., Creminon C., Davis J. B., Geppetti P., Di Marzo V. The vanilloid receptor (VR1) mediated effects of anandamide are potently enhanced by the cAMP-dependent protein kinase. J. Neurochem. 77, pp. 1660-1663, 2001.   DOI
30 Bhave, G., Hu, H.-J., Kathi S., Glauner, Zhu, W., Wang, H., D. J. Brasier, Gerry S. Oxford ,and Robert W., Gereau IV. protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc. Natl. Acad. Sci., 100, pp. 12480-12485, 2003.   DOI
31 Premkumar L. S., Qi Z. H., Van Buren J., Raisinghani M. Enhancement of potency and efficacy of NADA by PKC-mediated phosphorylation of vanilloid receptor. J. Neurophysiol. 91, pp. 1442-1449, 2004.   DOI